PurposeClarithromycin was considered the cornerstone for the treatment of Mycobacterium abscessus complex infections. Genetic resistance mechanisms have been described and many experts propose amikacin as an alternative. Nevertheless, clarithromycin has several advantages; therefore, it is necessary to identify the non-functional erm(41) allele to determine the most suitable treatment. The aims of this study were to characterize the molecular mechanisms of clarithromycin resistance in a collection of Mycobacterium abscessus complex isolates and to verify the relationship between these mechanisms and the antibiogram.Materials and MethodsClinical isolates of M. abscessus complex (n = 22) from 16 patients were identified using four housekeeping genes (rpoB, secA1, sodA and hsp65), and their genetic resistance was characterized by studying erm(41) and rrl genes. Nine strains were recovered from the clinical isolates and subjected to E-test and microdilution clarithromycin susceptibility tests, with readings at 3, 7 and 14 days.ResultsWe classified 11/16 (68.8%) M. abscessus subsp. abscessus, 4/16 (25.0%) M. abscessus subsp. bolletii, and 1/16 (6.3%) M. abscessus subsp. massiliense. T28 erm(41) allele was observed in 8 Mycobacterium abscessus subps. abscessus and 3 Mycobacterium abscessus subsp. bolletii. One strain of M. abscessus subsp. bolletii had an erm(41) gene truncated and was susceptible to clarithromycin. No mutations were observed in rrl gene first isolates. In three patients, follow-up of initial rrl wild-type strains showed acquired resistance.ConclusionsMost clinical isolates of M. abscessus complex had inducible resistance to clarithromycin and total absence of constitutive resistance. Our findings showed that the acquisition of resistance mutations in rrl gene was associated with functional and non-functional erm(41) gene. Caution is needed when using erm(41) sequencing alone to identify M. abscessus subspecies. This study reports an acquired mutation at position 2057 of rrl gene, conferring medium-low clarithromycin constitutive resistance.
Background Mycobacterium abscessus is an extensively drug–resistant pathogen that causes pulmonary disease, particularly in cystic fibrosis (CF) patients. Identifying direct patient-to-patient transmission of M. abscessus is critically important in directing an infection control policy for the management of risk in CF patients. A variety of clinical labs have used molecular epidemiology to investigate transmission. However, there is still conflicting evidence as to how M. abscessus is acquired and whether cross-transmission occurs. Recently, labs have applied whole-genome sequencing (WGS) to investigate this further and, in this study, we investigated whether WGS can reliably identify cross-transmission in M. abscessus. Methods We retrospectively sequenced the whole genomes of 145 M. abscessus isolates from 62 patients, seen at 4 hospitals in 2 countries over 16 years. Results We have shown that a comparison of a fixed number of core single nucleotide variants alone cannot be used to infer cross-transmission in M. abscessus but does provide enough information to replace multiple existing molecular assays. We detected 1 episode of possible direct patient-to-patient transmission in a sibling pair. We found that patients acquired unique M. abscessus strains even after spending considerable time on the same wards with other M. abscessus–positive patients. Conclusions This novel analysis has demonstrated that the majority of patients in this study have not acquired M. abscessus through direct patient-to-patient transmission or a common reservoir. Tracking transmission using WGS will only realize its full potential with proper environmental screening, as well as patient sampling.
Patients with CNV secondary to AMD treated with a LD protocol had better results than patients treated with a PRN protocol with intravitreal bevacizumab.
In our study, intravitreal bevacizumab appeared to be safe and efficacious in eyes with CNV secondary to PM.
This work provides a comprehensive CpG methylation landscape of the different layers of the human eye that unveils the gene networks associated with their biological functions and how these are disrupted in common visual disorders. Herein, we firstly determined the role of CpG methylation in the regulation of ocular tissue-specification and described hypermethylation of retinal transcription factors (i.e., PAX6, RAX, SIX6) in a tissue-dependent manner. Second, we have characterized the DNA methylome of visual disorders linked to internal and external environmental factors. Main conclusions allow certifying that crucial pathways related to Wnt-MAPK signaling pathways or neuroinflammation are epigenetically controlled in the fibrotic disorders involved in retinal detachment, but results also reinforced the contribution of neurovascularization (ETS1, HES5, PRDM16) in diabetic retinopathy. Finally, we had studied the methylome in the most frequent intraocular tumors in adults and children (uveal melanoma and retinoblastoma, respectively). We observed that hypermethylation of tumor suppressor genes is a frequent event in ocular tumors, but also unmethylation is associated with tumorogenesis. Interestingly, unmethylation of the proto-oncogen RAB31 was a predictor of metastasis risk in uveal melanoma. Loss of methylation of the oncogenic mir-17-92 cluster was detected in primary tissues but also in blood from patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.