Embodiment theory proposes that neural systems for perception and action are also engaged during language comprehension. Previous neuroimaging and neurophysiological studies have only been able to demonstrate modulation of action systems during comprehension of concrete language. We provide neurophysiological evidence for modulation of motor system activity during the comprehension of both concrete and abstract language. In Experiment 1, when the described direction of object transfer or information transfer (e.g., away from the reader to another) matched the literal direction of a hand movement used to make a response, speed of responding was faster than when the two directions mismatched (an action-sentence compatibility effect). In Experiment 2, we used single-pulse transcranial magnetic stimulation to study changes in the corticospinal motor pathways to hand muscles while reading the same sentences. Relative to sentences that do not describe transfer, there is greater modulation of activity in the hand muscles when reading sentences describing transfer of both concrete objects and abstract information. These findings are discussed in relation to the human mirror neuron system.
The functional sensorimotor nature of speech production has been demonstrated in studies examining speech adaptation to auditory and/or somatosensory feedback manipulations. These studies have focused primarily on flexible motor processes to explain their findings, without considering modifications to sensory representations resulting from the adaptation process. The present study explores whether the perceptual representation of the /s-b/ contrast may be adjusted following the alteration of auditory feedback during the production of /s/-initial words. Consistent with prior studies of speech adaptation, talkers exposed to the feedback manipulation were found to adapt their motor plans for /s/-production in order to compensate for the effects of the sensory perturbation. In addition, a shift in the /s-b/ category boundary was observed that reduced the functional impact of the auditory feedback manipulation by increasing the perceptual "distance" between the category boundary and subjects' altered /s/-stimuli-a pattern of perceptual adaptation that was not observed in two separate control groups. These results suggest that speech adaptation to altered auditory feedback is not limited to the motor domain, but rather involves changes in both motor output and auditory representations of speech sounds that together act to reduce the impact of the perturbation.
Recent neurophysiological and brain imaging studies have shown that the motor system is involved in language processing. However, it is an open question whether this involvement is a necessary requisite to understand language or rather a side effect of distinct cognitive processes underlying it. In order to clarify this issue we carried out three behavioral experiments, using a go-no go paradigm. Italian verbs expressing hand actions, foot actions or an abstract content served as stimuli. Participants used their right hands to respond. In Experiment 1, in which a semantics decision task with an early delivery of the go signal (during processing language material) was used, slower responses were found for hand action-related verbs than for foot action-related verbs. In Experiment 2, using the same task with either an early or a delayed delivery of the go signal (when language material had been already processed), no difference was found between responses to the two verb categories in the delayed delivery condition. In Experiment 3, in which a lexical decision task with an early delivery of the go signal was used, again no difference between the two verb categories was found. The present findings demonstrate that during language processing the modulation of the motor system crucially occurs while performing a semantics decision task, thus supporting the notion that this involvement is a necessary step to understand language rather than a side effect of upstream cognitive processes.
We are indebted to the keepers at Zoo Leipzig for their support and to Bridget Waller and Katja Liebal for helpful comments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.