A temperature-dependent asymmetric Prandtl-Ishlinskii (TAPI) model is developed to describe changes in hysteresis curves with respect to temperature found in the displacement curves vs. input voltage of a piezoelectric actuator (PEA). The proposed modeling scheme considers nonlinearities in an idealized capacitor term in the electromechanical model of the PEA to introduce both asymmetry and temperature dependence in the model. The developed model has the advantage of incorporating asymmetric and thermal effects in a hysteresis-free region of the model which simplifies inversion of the model as well as parameter determination. A parameter identification scheme is described to simplify model identification, even for a large number of thresholds, based on the advantages of the classical PI model. The TAPI model is verified experimentally and a compensator is designed to demonstrate that the PEA output is effectively linearized throughout the temperature range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.