The influence of nuclearity and charge of chiral Rh diene complexes on the activity and enantioselectivity in catalytic asymmetric 1,2-additions of organoboron reagents to Ntosylimines and 1,4-additions to enones was investigated. For this purpose, cationic dimeric Rh(I) complex [(Rh(1)) 2 Cl]SbF 6 and cationic monomeric Rh(I) complex [RhOH 2 (2)]SbF 6 were synthesized from oxazolidinone-substituted 3-phenylnorbornadiene ligands 1 and 2, which differ in the substitution pattern at oxazolidinone C-5′ (CMe 2 vs CH 2 ) and compared with the corresponding neutral dimeric and monomeric Rh(I) complexes [RhCl(1)] 2 and [RhCl(2)]. Structural, electronic, and mechanistic insights were gained by X-ray crystallography, cyclic voltammetry (CV), X-ray absorption spectroscopy (XAS), and DFT calculations. CV revealed an increased stability of cationic vs neutral Rh complexes toward oxidation. Comparison of solid-state and solution XAS (extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES)) data showed that the monomeric Rh complex [RhCl(2)] maintained its electronic state and coordination sphere in solution, whereas the dimeric Rh complex [RhCl(1)] 2 exchanges bridging chloro ligands by dioxane molecules in solution. In both 1,2-and 1,4-addition reactions, monomeric Rh complexes [RhCl(2)] and [RhOH 2 (2)]SbF 6 gave better yields as compared to dimeric complexes [RhCl(1)] 2 and [(Rh(1)) 2 Cl]SbF 6 . Regarding enantioselectivities, dimeric Rh species [RhCl(1)] 2 and [(Rh(1)) 2 Cl]SbF 6 performed better than monomeric Rh species in the 1,2-addition, while the opposite was true for the 1,4-addition. Neutral Rh complexes performed better than cationic complexes. Microemulsions improved the yields of 1,2-additions due to a most probable enrichment of Rh complexes in the amphiphilic film and provided a strong influence of the complex nuclearity and charge on the stereocontrol. A strong nonlinear-like effect (NLLE) was observed in 1,2-additions, when diastereomeric mixtures of ligands 1 and epi-1 were employed. The pronounced substrate dependency of the 1,4-addition could be rationalized by DFT calculations.
Reported herein is the coordination of rhenium complexes to tetrazine ligand in [ReCl(CO)3(TzPy)] [1] (TzPy = 3-(2-pyridyl)-1,2,4,5-tetrazine) and the rates of addition of different dienophiles to the tetrazine.
Organometallic complexes are frequently deposited on solid surfaces, but little is known about how the resulting complex−solid interactions alter their properties. Here, a series of complexes of the type Cu(dppf)(L x ) + (dppf = 1,1′-bis(diphenylphosphino)ferrocene, L x = monoand bidentate ligands) were synthesized, physisorbed, ion-exchanged, or covalently immobilized on solid surfaces and investigated by 31 P MAS NMR spectroscopy. Complexes adsorbed on silica interacted weakly and were stable, while adsorption on acidic γ-Al 2 O 3 resulted in slow complex decomposition. Ion exchange into mesoporous Na-[Al]SBA-15 resulted in magnetic inequivalence of 31 P nuclei verified by 31 P-31 P RFDR and 1 H-31 P FSLG HETCOR. DFT calculations verified that a MeCN ligand dissociates upon ion exchange. Covalent immobilization via organic linkers as well as ion exchange with bidentate ligands both lead to rigidly bound complexes that cause broad 31 P CSA tensors. We thus demonstrate how the interactions between complexes and functional surfaces determine and alter the stability of complexes. The applied Cu(dppf)(L x ) + complex family members are identified as suitable solid-state NMR probes for investigating the influence of support surfaces on deposited inorganic complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.