SignificanceAlzheimer’s disease (AD) is an age-related neurodegenerative disease. Genome-wide association studies predominately focusing on Caucasian populations have identified risk loci and genes associated with AD; the majority of these variants reside in noncoding regions with unclear functions. Here, we report a whole-genome sequencing study for AD in the Chinese population. Other than the APOE locus, we identified common variants in GCH1 and KCNJ15 that show suggestive associations with AD. For these two risk variants, an association with AD or advanced onset of disease can be observed in non-Asian AD cohorts. An association study of risk variants with expression data revealed their modulatory effects on immune signatures, linking the potential roles of these genes with immune-related pathways during AD pathogenesis.
Accurate diagnosis of mild cognitive impairment (MCI) before conversion to Alzheimer’s disease (AD) is invaluable for patient treatment. Many works showed that MCI and AD affect functional and structural connections between brain regions as well as the shape of cortical regions. However, ‘shape connections’ between brain regions are rarely investigated -e.g., how morphological attributes such as cortical thickness and sulcal depth of a specific brain region change in relation to morphological attributes in other regions. To fill this gap, we unprecedentedly design morphological brain multiplexes for late MCI/AD classification. Specifically, we use structural T1-w MRI to define morphological brain networks, each quantifying similarity in morphology between different cortical regions for a specific cortical attribute. Then, we define a brain multiplex where each intra-layer represents the morphological connectivity network of a specific cortical attribute, and each inter-layer encodes the similarity between two consecutive intra-layers. A significant performance gain is achieved when using the multiplex architecture in comparison to other conventional network analysis architectures. We also leverage this architecture to discover morphological connectional biomarkers fingerprinting the difference between late MCI and AD stages, which included the right entorhinal cortex and right caudal middle frontal gyrus.
CT and PET each detected evidence of metastatic disease in 50% of all patients with a high PSA or PSA velocity (greater than 4 ng./ml. or greater than 0.2 ng./ml. per month, respectively). Both techniques are limited for detecting metastatic disease in patients with a low PSA or PSA velocity. Our data suggest that monoclonal antibody scan has a lower detection rate than CT or PET.
Current developments in PET technology that accurately stage the extent of tumor before surgery as well as monitor effectiveness or ineffectiveness of new or current therapies may make PET a valuable tool in research and in the management of urological diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.