Abstract. This paper deals with the total variation minimization problem in image restoration for convex data fidelity functionals. We propose a new and fast algorithm which computes an exact solution in the discrete framework. Our method relies on the decomposition of an image into its level sets. It maps the original problems into independent binary Markov Random Field optimization problems at each level. Exact solutions of these binary problems are found thanks to minimum cost cut techniques in graphs. These binary solutions are proved to be monotone increasing with levels and yield thus an exact solution of the discrete original problem. Furthermore we show that minimization of total variation under L 1 data fidelity term yields a self-dual contrast invariant filter. Finally we present some results.
International audienceDue to the enormous quantity of radar images acquired by satellites and through shuttle missions, there is an evident need for efficient automatic analysis tools. This paper describes unsupervised classification of radar images in the framework of hidden Markov models and generalized mixture estimation. Hidden Markov chain models, applied to a Hilbert-Peano scan of the image, constitute a fast and robust alternative to hidden Markov random field models for spatial regularization of image analysis problems, even though the latter provide a finer and more intuitive modeling of spatial relationships. We here compare the two approaches and show that they can be combined in a way that conserves their respective advantages. We also describe how the distribution families and parameters of classes with constant or textured radar reflectivity can be determined through generalized mixture estimation. Sample results obtained on real and simulated radar images are presente
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.