Robot-assisted therapy has become increasingly popular and useful in post-stroke neurorehabilitation. This paper presents an overview of the design and control of the dual-arm Recupera exoskeleton to provide intense therapist-guided as well as self training for sensorimotor rehabilitation of the upper body. The exoskeleton features a lightweight design, high level of modularity, decentralized computing, and various levels of safety implementation. Due to its modularity, the system can be used as a wheel-chair mounted system or as a full-body system. Both systems enable a wide range of therapies while efficiently grounding the weight of the system and without compromising the patient’s mobility. Furthermore, two rehabilitation therapies implemented on the exoskeleton system, namely teach & replay therapy and mirror therapy, are presented along with experimental results.
The dynamic stiffness of a grinding machine influences the process stability enormously. Among other things the stability of the grinding process is affected by influences like the specification of the grinding wheel, the condition of the workpiece and machine parameters. Unfavorable combinations of these lead to chatter vibrations of the machine and chatter marks on the workpiece. This paper presents the results of experimental and theoretical investigations of the vibration behavior of a grinding machine and the design of active modules. These modules will be implemented in the structure of the machine to minimize the vibrations and additionally increase its static stiffness of the machine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.