The epidemiology of valvular heart disease has significantly changed in the past few decades with aging as one of the main contributing factors. The available options for replacement of diseased valves are currently limited to mechanical and bioprosthetic valves, while the tissue engineered ones that are under study are currently far from clinical approval. The main problem with the tissue engineered heart valves is their progressive deterioration that leads to regurgitation and/or leaflet thickening a few months after implantation. The use of bioresorbable scaffolds is speculated to be one factor affecting these valves' failure. We have previously developed a non-degradable superelastic nitinol mesh scaffold concept that can be used for heart valve tissue engineering applications. It is hypothesized that the use of a non-degradable superelastic nitinol mesh may increase the durability of tissue engineered heart valves, avoid their shrinkage, and accordingly prevent regurgitation. The current work aims to study the effects of the design features on mechanical characteristics of this valve scaffold to attain proper function prior to in vivo implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.