This paper summarizes a joint NASA/Boeing research effort to advance Active Flow Control (AFC) technology to enhance aerodynamic efficiency of a vertical tail. Sweeping jet AFC technology was successfully tested on subscale and full-scale models as well as in flight. The subscale test was performed at Caltech on a ~14% scale model. More than 50% side force enhancement was achieved by the sweeping jet actuation when the momentum coefficient was 1.7%. AFC caused significant increases in suction pressure on the actuator side and associated side force enhancement. Subsequently, a full-scale Boeing 757 vertical tail model equipped with sweeping jets was tested at the National Full-Scale Aerodynamics Complex 40-by 80-Foot Wind Tunnel at NASA Ames Research Center. There, flow separation control optimization was performed at near flight conditions. Greater than 20% increase in side force were achieved for the maximum rudder deflection of 30° at the key sideslip angles (0° and -7.5°) with a 31-actuator AFC configuration. Based on these tests, the momentum coefficient is shown to be a necessary, but not sufficient parameter to use for design and scaling of sweeping jet AFC from subscale tests to full-scale applications. Leveraging the knowledge gained from the wind tunnel tests, the AFC-enhanced vertical tail technology was successfully flown on the Boeing 757 ecoDemonstrator in the spring of 2015.
This paper presents a systems overview of how the Boeing and NASA team designed, analyzed, fabricated, and integrated the Active Flow Control (AFC) technology and Insect AccretionMitigation (IAM) systems on the Boeing 757 ecoDemonstrator. The NASA Environmentally Responsible Aviation (ERA) project partnered with Boeing to demonstrate these two technology systems on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The AFC system demonstrated attenuation of flow separation on a highly deflected rudder and increased the side force generated. This AFC system may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff while still operating in a conventional manner over the rest of the flight envelope. The AFC system consisted of ducting to obtain air from the Auxiliary Power Unit (APU), a control valve to modulate the system mass flow, a heat exchanger to lower the APU air temperature, and additional ducting to deliver the air to the AFC actuators located on the vertical tail. The IAM system demonstrated how to mitigate insect residue adhesion on a wing's leading edge. Something as small as insect residue on a leading edge can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. The IAM system consisted of NASA developed Engineered Surfaces (ES) which were thin aluminum sheet substrate panels with coatings applied to the exterior. These ES were installed on slats 8 and 9 on the right wing of the 757 ecoDemonstrator. They were designed to support panel removal and installation in one crew shift. Each slat accommodated 4 panels. Both the AFC and IAM flight test were the culmination of several years of development and produced valuable data for the advancement of modern aircraft designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.