Objective: Implanted cardiac pacemakers must be regularly replaced due to depleted batteries. A possible alternative is proposed by subcutaneous photovoltaic energy harvesting. The body's reaction to an implant can cause device encapsulation. Potential changes in spectral light transmission of skin can influence the performance of subcutaneous photovoltaic cells and has not yet been studied in large animal studies. Methods: Subcutaneous implants measuring changes in the light reaching the implant were developed. Three pigs received those implants and were analyzed for seven weeks. Spectral measurements with known irradiation were performed to identify possible changes in the transparency of the tissues above the implant during the wound healing process. A histological analysis at the end of the trial investigated the skin tissue above the subcutaneous photovoltaic implants. Results: The implants measured decreasing light intensity and shifts in the light's spectrum during the initial wound healing phase. In a later stage of tissue recovery, the implants measured a generally reduced light intensity compared to the healthy tissue after implantation. The spectral distribution of the measured light at the end of the trial was similar to the first measurements. The histological analysis showed subcutaneous granulation tissue formation for all devices. Conclusion: The varying reduction of light intensity reaching the implants means that safety margins must be sufficiently high to ensure the power. At the end of the wound healing process, the spectral distribution of the light reaching the implant is similar to healthy tissue. Significance: Optimizations of spectral sensitivity of photovoltaic cells are possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.