Understanding the ecological consequences of biodiversity is a fundamental challenge. Research on a key component of biodiversity, genetic diversity, has traditionally focused on its importance in evolutionary processes, but classical studies in evolutionary biology, agronomy and conservation biology indicate that genetic diversity might also have important ecological effects. Our review of the literature reveals significant effects of genetic diversity on ecological processes such as primary productivity, population recovery from disturbance, interspecific competition, community structure, and fluxes of energy and nutrients. Thus, genetic diversity can have important ecological consequences at the population, community and ecosystem levels, and in some cases the effects are comparable in magnitude to the effects of species diversity. However, it is not clear how widely these results apply in nature, as studies to date have been biased towards manipulations of plant clonal diversity, and little is known about the relative importance of genetic diversity vs. other factors that influence ecological processes of interest. Future studies should focus not only on documenting the presence of genetic diversity effects but also on identifying underlying mechanisms and predicting when such effects are likely to occur in nature.
Our planet is an increasingly urbanized landscape, with over half of the human population residing in cities. Despite advances in urban ecology, we do not adequately understand how urbanization affects the evolution of organisms, nor how this evolution may affect ecosystems and human health. Here, we review evidence for the effects of urbanization on the evolution of microbes, plants, and animals that inhabit cities. Urbanization affects adaptive and nonadaptive evolutionary processes that shape the genetic diversity within and between populations. Rapid adaptation has facilitated the success of some native species in urban areas, but it has also allowed human pests and disease to spread more rapidly. The nascent field of urban evolution brings together efforts to understand evolution in response to environmental change while developing new hypotheses concerning adaptation to urban infrastructure and human socioeconomic activity. The next generation of research on urban evolution will provide critical insight into the importance of evolution for sustainable interactions between humans and our city environments.
Across plants and animals, host-associated microbial communities play fundamental roles in host nutrition, development, and immunity. The factors that shape host-microbiome interactions are poorly understood, yet essential for understanding the evolution and ecology of these symbioses. Plant roots assemble two distinct microbial compartments from surrounding soil: the rhizosphere (microbes surrounding roots) and the endosphere (microbes within roots). Root-associated microbes were key for the evolution of land plants and underlie fundamental ecosystem processes. However, it is largely unknown how plant evolution has shaped root microbial communities, and in turn, how these microbes affect plant ecology, such as the ability to mitigate biotic and abiotic stressors. Here we show that variation among 30 angiosperm species, which have diverged for up to 140 million years, affects root bacterial diversity and composition. Greater similarity in root microbiomes between hosts leads to negative effects on plant performance through soil feedback, with specific microbial taxa in the endosphere and rhizosphere potentially affecting competitive interactions among plant species. Drought also shifts the composition of root microbiomes, most notably by increasing the relative abundance of the Actinobacteria. However, this drought response varies across host plant species, and host-specific changes in the relative abundance of endosphere are associated with host drought tolerance. Our results emphasize the causes of variation in root microbiomes and their ecological importance for plant performance in response to biotic and abiotic stressors.
Summary1. Although secondary metabolites are recognized as fundamental to the defence of plants against insect and mammalian herbivores, their relative importance compared to other potential defensive plant traits (e.g. physical resistance, gross morphology, life-history, primary chemistry and physiology) are not well understood. 2. We conducted a meta-analysis to answer the question: What types of genetically variable plant traits most strongly predict resistance against herbivores? We performed a comprehensive literature search and obtained 499 separate measurements of the strength of covariation (measured as genetic correlations) between plant traits and herbivore susceptibility -these were extracted from 72 studies involving 19 plant families. 3. Surprisingly, we found no overall association between the concentrations of secondary metabolites and herbivore susceptibility -plant traits other than secondary metabolites most strongly predicted herbivore susceptibility. Specifically, genetic variation in life-history traits (e.g. flowering time, growth rate) consistently exhibited the strongest genetic correlations with susceptibility. Genetic variation in gross morphological traits (e.g. no. branches, plant size) and physical resistance traits (e.g. latex, trichomes) were also frequently correlated with variation in herbivore susceptibility, but these relationships depended on attributes of the herbivores (e.g. feeding guild) and plants (e.g. longevity). 4. These results call into question the conventional wisdom that secondary metabolites are the most important anti-herbivore defence of plants. We propose the hypothesis that herbivores select most strongly on genetic variation in life-history, morphological and physical resistance traits, but the greater pleiotropic effects of genes controlling these traits impose strong constraints on their evolution. Meanwhile, secondary metabolites could have evolved to be important defensive mechanisms not because they have the largest effect on herbivores, but because the constraints on their evolution are the weakest.
Insect herbivores are hypothesized to be major factors affecting the ecology and evolution of plants. We tested this prediction by suppressing insects in replicated field populations of a native plant, Oenothera biennis, which reduced seed predation, altered interspecific competitive dynamics, and resulted in rapid evolutionary divergence. Comparative genotyping and phenotyping of nearly 12,000 O. biennis individuals revealed that in plots protected from insects, resistance to herbivores declined through time owing to changes in flowering time and lower defensive ellagitannins in fruits, whereas plant competitive ability increased. This independent real-time evolution of plant resistance and competitive ability in the field resulted from the relaxation of direct selective effects of insects on plant defense and through indirect effects due to reduced herbivory on plant competitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.