Speaker embedding models that utilize neural networks to map utterances to a space where distances reflect similarity between speakers have driven recent progress in the speaker recognition task. However, there is still a significant performance gap between recognizing speakers in the training set and unseen speakers. The latter case corresponds to the fewshot learning task, where a trained model is evaluated on unseen classes. Here, we optimize a speaker embedding model with prototypical network loss (PNL), a state-of-the-art approach for the few-shot image classification task. The resulting embedding model outperforms the state-of-the-art triplet loss based models in both speaker verification and identification tasks, for both seen and unseen speakers.
This paper introduces a novel similarity learning framework.Working with inequality constraints involving quadruplets of images, our approach aims at efficiently modeling similarity from rich or complex semantic label relationships. From these quadruplet-wise constraints, we propose a similarity learning framework relying on a convex optimization scheme. We then study how our metric learning scheme can exploit specific class relationships, such as class ranking (relative attributes), and class taxonomy. We show that classification using the learned metrics gets improved performance over state-of-the-art methods on several datasets. We also evaluate our approach in a new application to learn similarities between webpage screenshots in a fully unsupervised way.
Understanding videos such as TV series and movies requires analyzing who the characters are and what they are doing. We address the challenging problem of clustering face tracks based on their identity. Different from previous work in this area, we choose to operate in a realistic and difficult setting where: (i) the number of characters is not known a priori; and (ii) face tracks belonging to minor or background characters are not discarded.To this end, we propose Ball Cluster Learning (BCL), a supervised approach to carve the embedding space into balls of equal size, one for each cluster. The learned ball radius is easily translated to a stopping criterion for iterative merging algorithms. This gives BCL the ability to estimate the number of clusters as well as their assignment, achieving promising results on commonly used datasets. We also present a thorough discussion of how existing metric learning literature can be adapted for this task. 1 We consider three types of characters based on their roles: primary or recurring characters have major roles in several episodes; secondary or minor characters are named and play an important role in some episodes; and background or unknown (Unk) characters are unnamed and uncredited.
This paper introduces a regularization method to explicitly control the rank of a learned symmetric positive semidefinite distance matrix in distance metric learning. To this end, we propose to incorporate in the objective function a linear regularization term that minimizes the k smallest eigenvalues of the distance matrix. It is equivalent to minimizing the trace of the product of the distance matrix with a matrix in the convex hull of rank-k projection matrices, called a Fantope. Based on this new regularization method, we derive an optimization scheme to efficiently learn the distance matrix. We demonstrate the effectiveness of the method on synthetic and challenging real datasets of face verification and image classification with relative attributes, on which our method outperforms state-of-the-art metric learning algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.