We describe the discovery and the structure-activity relationship of a new series of quinoline derivatives acting as selective and highly potent noncompetitive mGlu1 antagonists. We first identified cis-10 as a fairly potent mGlu1 antagonist (IC(50) = 20 nM) in a cell-based signal transduction assay on the rat mGlu1 receptor expressed in CHO-K1 cells, and then we were able to design and synthesize highly potent compounds on both rat and human mGlu1 receptors as exemplified by compound cis-64a, which has an antagonist potency of 0.5 nM for the human mGlu1 receptor. We briefly present and discuss the in vitro metabolic stability of the compounds in human liver microsomes. We finally report the pharmacokinetic properties of our lead compound cis-64a.
All-trans-retinoic acid is a potent inhibitor of cell proliferation and inducer of differentiation. However, the clinical use of all-transretinoic acid in the treatment of cancer is significantly hampered by its toxicity and the prompt emergence of resistance, believed to be caused by increased all-trans-retinoic acid metabolism. Inhibitors of all-trans-retinoic acid metabolism may therefore prove valuable in the treatment of cancer. In this study, we characterize R116010 as a new anticancer drug that is a potent inhibitor of all-trans-retinoic acid metabolism. In vitro, R116010 potently inhibits all-trans-retinoic acid metabolism in intact T47D cells with an IC 50 -value of 8.7 nM. In addition, R116010 is a selective inhibitor as indicated by its inhibition profile for several other cytochrome P450-mediated reactions. In T47D cell proliferation assays, R116010 by itself has no effect on cell proliferation. However, in combination with all-trans-retinoic acid, R116010 enhances the all-trans-retinoic acid-mediated antiproliferative activity in a concentration-dependent manner. In vivo, the growth of murine oestrogen-independent TA3-Ha mammary tumours is significantly inhibited by R116010 at doses as low as 0.16 mg kg 71 . In conclusion, R116010 is a highly potent and selective inhibitor of all-trans-retinoic acid metabolism, which is able to enhance the biological activity of all-trans-retinoic acid, thereby exhibiting antitumour activity. R116010 represents a novel and promising anticancer drug with an unique mechanism of action.
The complete genomic sequence of the gene responsible for the predominant form of polycystic kidney disease, PKD1, was determined to provide a framework for understanding the biology and evolution of the gene, and to aid in the development of molecular diagnostics. The DNA sequence of a 54 kb interval immediately upstream of the poly(A) addition signal sequence of the PKD1 transcript was determined, and then analyzed using computer methods. A leucine-rich repeat (LRR) motif was identified within the resulting predicted protein sequence of the PKD1 gene. By analogy with other LRR-containing proteins, this may explain some of the disease-related renal alterations such as mislocalization of membrane protein constituents and changes in the extracellular matrix organization. Finally, comparison of the genomic sequence and the published partial cDNA sequence showed several differences between the two sequences. The most significant difference detected predicts a novel carboxy-terminus for the PKD1 gene product.
R115777 (R)-6-amino[(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone is a potent and selective inhibitor of farnesyl protein transferase with significant antitumor effects in vivo subsequent to oral administration in mice. Taking its roots into Janssen's ketoconazole and retinoic acid catabolism programs, our interest into Ras prenylation process led us stepwise to identify the key structural features of R115777. Methodology, structure activity relationships, and pharmacology will be presented. R115777 is currently in phase III clinical evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.