Currently used anticoagulants prevent thrombosis but increase bleeding. We show an anticoagulation therapy without bleeding risk based on a plasma protease factor XII function-neutralizing antibody. We screened for antibodies against activated factor XII (FXIIa) using phage display and demonstrated that recombinant fully human antibody 3F7 binds into the FXIIa enzymatic pocket. 3F7 interfered with FXIIa-mediated coagulation, abolished thrombus formation under flow, and blocked experimental thrombosis in mice and rabbits. We adapted an extracorporeal membrane oxygenation (ECMO) cardiopulmonary bypass system used for infant therapy to analyze clinical applicability of 3F7 in rabbits. 3F7 provided thromboprotection as efficiently as heparin, and both drugs prevented fibrin deposition and thrombosis within the extracorporeal circuit. Unlike heparin, 3F7 treatment did not impair the hemostatic capacity and did not increase bleeding from wounds. These data establish that targeting of FXIIa is a safe mode of thromboprotection in bypass systems, and provide a clinically relevant anticoagulation strategy that is not complicated by excess bleeding.
Background Exaggerated and prolonged inflammation after myocardial infarction (MI) accelerates left ventricular remodeling. Inflammatory pathways may present a therapeutic target to prevent post-MI heart failure. However, the appropriate magnitude and timing of interventions are largely unknown, in part because noninvasive monitoring tools are lacking. We here employed nanoparticle-facilitated silencing of CCR2, the chemokine receptor that governs inflammatory Ly-6Chigh monocyte subset traffic, to reduce infarct inflammation in apoE−/− mice after MI. We used dual target PET/MRI of transglutaminase factor XIII (FXIII) and myeloperoxidase (MPO) activity to monitor how monocyte subset-targeted RNAi altered infarct inflammation and healing. Methods and Results Flow cytometry, gene expression analysis and histology revealed reduced monocyte numbers and enhanced resolution of inflammation in infarcted hearts of apoE−/− mice that were treated with nanoparticle-encapsulated siRNA. To follow extracellular matrix crosslinking non-invasively, we developed a fluorine-18 labeled PET agent (18F-FXIII). Recruitment of MPO-rich inflammatory leukocytes was imaged using a molecular MRI sensor of MPO activity (MPO-Gd). PET/MRI detected anti-inflammatory effects of intravenous nanoparticle-facilitated siRNA therapy (75% decrease of MPO-Gd signal, p<0.05) while 18F-FXIII PET reflected unimpeded matrix crosslinking in the infarct. Silencing of CCR2 during the first week after MI improved ejection fraction on day 21 after MI from 29 to 35% (p<0.05). Conclusion CCR2 targeted RNAi reduced recruitment of Ly-6Chigh monocytes, attenuated infarct inflammation and curbed post-MI left ventricular remodeling.
Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders.
One major hallmark of Alzheimer's disease (AD) is the massive loss of synapses that occurs at an early clinical stage of the disease. In this study, we characterize alterations in spine density and the expression of synapse-associated immediate early gene Arc (activity-regulated cytoskeleton-associated protein) in the hippocampal CA1 regions of two different amyloid precursor protein (APP) transgenic mouse lines before plaque development and their connection to performance in hippocampus-dependent memory tests. The density of mushroom-type spines was reduced by 34% in the basal dendrites proximal to the soma of CA1 pyramidal neurons in 5.5-month-old Tg2576 mice, carrying the Swedish mutation, compared with wild-type littermates. A similar reduction of 42% was confirmed in the same region of 8-month-old APP/Lo mice, carrying the London mutation. In this strain, the reduction extended to the distal dendritic spines (28%), although no differences were found in apical dendrites in either transgenic mouse line. Both transgenic mice lines presented a significant increase in Arc protein expression in CA1 compared with controls, suggesting rather an overactivity and increased spine turnover that was supported by a significant decrease in number of somatostatin-immunopositive inhibitory interneurons in the stratum oriens of CA1. Behaviorally, the transgenic mice showed decrease freezing in the fear contextual conditioning test and impairment in spatial memory assessed by Morris water maze test. These data indicate that cognitive impairment in APP transgenic mice is correlated with impairment of synaptic connectivity in hippocampal CA1, probably attributable to loss of inhibitory interneurons and subsequent hyperactivity.
Hereditary angioedema type III (HAEIII) is a rare inherited swelling disorder that is associated with point mutations in the gene encoding the plasma protease factor XII (FXII). Here, we demonstrate that HAEIII-associated mutant FXII, derived either from HAEIII patients or recombinantly produced, is defective in mucin-type Thr309-linked glycosylation. Loss of glycosylation led to increased contact-mediated autoactivation of zymogen FXII, resulting in excessive activation of the bradykinin-forming kallikrein-kinin pathway. In contrast, both FXII-driven coagulation and the ability of C1-esterase inhibitor to bind and inhibit activated FXII were not affected by the mutation. Intravital laser-scanning microscopy revealed that, compared with control animals, both F12-/- mice reconstituted with recombinant mutant forms of FXII and humanized HAEIII mouse models with inducible liver-specific expression of Thr309Lys-mutated FXII exhibited increased contact-driven microvascular leakage. An FXII-neutralizing antibody abolished bradykinin generation in HAEIII patient plasma and blunted edema in HAEIII mice. Together, the results of this study characterize the mechanism of HAEIII and establish FXII inhibition as a potential therapeutic strategy to interfere with excessive vascular leakage in HAEIII and potentially alleviate edema due to other causes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.