Progression to exudative 'wet' age-related macular degeneration (exAMD) is a major cause of visual deterioration. In patients diagnosed with exAMD in one eye, we introduce an artificial intelligence (AI) system to predict progression to exAMD in the second eye. By combining models based on 3D optical coherence tomography images and corresponding automatic tissue maps, our system predicts conversion to exAMD within a clinically-actionable 6-month time window, achieving a per-volumetric-scan sensitivity of 80% at 55% specificity, and 34% sensitivity at 90% specificity. This level of performance corresponds to true positives in 78% and 41% individual eyes, and false positives in 56% and 17% individual eyes, at the high sensitivity and high specificity points respectively. Moreover, we show that automatic tissue segmentation can identify anatomical changes prior to conversion and high-risk subgroups. This AI system overcomes substantial interobserver variability in expert predictions, performing better than five out of six experts, and demonstrates the potential of using AI to predict disease progression.
Purpose: To apply a deep learning algorithm for automated, objective, and comprehensive quantification of OCT scans to a large real-world dataset of eyes with neovascular age-related macular degeneration (AMD) and make the raw segmentation output data openly available for further research.Design: Retrospective analysis of OCT images from the Moorfields Eye Hospital AMD Database.Participants: A total of 2473 first-treated eyes and 493 second-treated eyes that commenced therapy for neovascular AMD between June 2012 and June 2017.Methods: A deep learning algorithm was used to segment all baseline OCT scans. Volumes were calculated for segmented features such as neurosensory retina (NSR), drusen, intraretinal fluid (IRF), subretinal fluid (SRF), subretinal hyperreflective material (SHRM), retinal pigment epithelium (RPE), hyperreflective foci (HRF), fibrovascular pigment epithelium detachment (fvPED), and serous PED (sPED). Analyses included comparisons between firstand second-treated eyes by visual acuity (VA) and race/ethnicity and correlations between volumes.Main Outcome Measures: Volumes of segmented features (mm 3 ) and central subfield thickness (CST) (mm).Results: In first-treated eyes, the majority had both IRF and SRF (54.7%). First-treated eyes had greater volumes for all segmented tissues, with the exception of drusen, which was greater in second-treated eyes. In first-treated eyes, older age was associated with lower volumes for RPE, SRF, NSR, and sPED; in second-treated eyes, older age was associated with lower volumes of NSR, RPE, sPED, fvPED, and SRF. Eyes from Black individuals had higher SRF, RPE, and serous PED volumes compared with other ethnic groups. Greater volumes of the majority of features were associated with worse VA.Conclusions: We report the results of large-scale automated quantification of a novel range of baseline features in neovascular AMD. Major differences between firstand second-treated eyes, with increasing age, and between ethnicities are highlighted. In the coming years, enhanced, automated OCT segmentation may assist personalization of real-world care and the detection of novel structureefunction correlations. These data will be made publicly available for replication and future investigation by the AMD research community.
IMPORTANCE Quantitative volumetric measures of retinal disease in optical coherence tomography (OCT) scans are infeasible to perform owing to the time required for manual grading. Expert-level deep learning systems for automatic OCT segmentation have recently been developed. However, the potential clinical applicability of these systems is largely unknown.OBJECTIVE To evaluate a deep learning model for whole-volume segmentation of 4 clinically important pathological features and assess clinical applicability. DESIGN, SETTING, PARTICIPANTSThis diagnostic study used OCT data from 173 patients with a total of 15 558 B-scans, treated at Moorfields Eye Hospital. The data set included 2 common OCT devices and 2 macular conditions: wet age-related macular degeneration (107 scans) and diabetic macular edema (66 scans), covering the full range of severity, and from 3 points during treatment. Two expert graders performed pixel-level segmentations of intraretinal fluid, subretinal fluid, subretinal hyperreflective material, and pigment epithelial detachment, including all B-scans in each OCT volume, taking as long as 50 hours per scan. Quantitative evaluation of whole-volume model segmentations was performed. Qualitative evaluation of clinical applicability by 3 retinal experts was also conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.