Abstract. The European Alps stretch over a range of climate zones which affect the spatial distribution of snow. Previous analyses of station observations of snow were confined to regional analyses. Here, we present an Alpine-wide analysis of snow depth from six Alpine countries – Austria, France, Germany, Italy, Slovenia, and Switzerland – including altogether more than 2000 stations of which more than 800 were used for the trend assessment. Using a principal component analysis and k-means clustering, we identified five main modes of variability and five regions which match the climatic forcing zones: north and high Alpine, north-east, north-west, south-east, and south and high Alpine. Linear trends of monthly mean snow depth between 1971 and 2019 showed decreases in snow depth for most stations from November to May. The average trend among all stations for seasonal (November to May) mean snow depth was −8.4 % per decade, for seasonal maximum snow depth −5.6 % per decade, and for seasonal snow cover duration −5.6 % per decade. Stronger and more significant trends were observed for periods and elevations where the transition from snow to snow-free occurs, which is consistent with an enhanced albedo feedback. Additionally, regional trends differed substantially at the same elevation, which challenges the notion of generalizing results from one region to another or to the whole Alps. This study presents an analysis of station snow depth series with the most comprehensive spatial coverage in the European Alps to date.
Climate change has already led to a wide range of impacts on our society, the economy and the environment. According to future scenarios, mountain regions are highly vulnerable to climate impacts, including changes in the water cycle (e.g. rainfall extremes, melting of glaciers, river runoff), loss of biodiversity and ecosystems services, damages to local economy (drinking water supply, hydropower generation, agricultural suitability) and human safety (risks of natural hazards). This is due to their exposure to recent climate warming (e.g. temperature regime changes, thawing of permafrost) and the high degree of specialization of both natural and human systems (e.g. mountain species, valley population density, tourism-based economy). These characteristics call for the application of risk assessment methodologies able to describe the complex interactions among multiple hazards, biophysical and socioeconomic systems, towards climate change adaptation. Current approaches used to assess climate change risks often address individual risks separately and do not fulfil a comprehensive representation of cumulative effects associated to different hazards (i.e. compound events). Moreover, pioneering multi-layer single risk assessment (i.e. overlapping of single-risk assessments addressing different hazards) is still widely used, causing misleading evaluations of multi-risk processes. This raises key questions about the distinctive features of multi-risk assessments and the available tools and methods to address them. Here we present a review of five cutting-edge modelling approaches (Bayesian networks, agent-based models, system dynamic models, event and fault trees, and hybrid models), exploring their potential applications for multi-risk assessment and climate change adaptation in mountain regions. The comparative analysis sheds light on advantages and limitations of each approach, providing a roadmap for methodological and technical implementation of multi-risk assessment according to distinguished criteria (e.g. spatial and temporal dynamics, uncertainty management, cross-sectoral assessment, adaptation measures integration, data required and level of complexity). The results show limited applications of the selected methodologies in addressing the climate and risks challenge in mountain environments. In particular, system dynamic and hybrid models demonstrate higher potential for further applications to represent climate change effects on multi-risk processes for an effective implementation of climate adaptation strategies.
Forests cover about 30% of the Earth surface, they are among the most biodiverse terrestrial ecosystems and represent the bulk of many ecological processes and services. The assessment of biodiversity is an important and essential goal to achieve but it can results difficult, time consuming and expensive when based on field data. Remote sensing covers large areas and provides consistent quality and standardized data, which can be used to estimate species diversity. One method to estimate species diversity from remote sensing data is based on the Spectral Variation Hypothesis (SVH), which assumes that the higher the spectral variation of an image, the higher the environmental heterogeneity and the species diversity of the considered area. SVH has been tested using different spectral heterogeneity (SH) indices and measures, recently the Rao's Q index has been proposed as a new spectral variation measure to be applied to remote sensing data. In this paper, we tested the SVH in an alpine coniferous forest to estimate tree species diversity. We evaluated the performance of the Rao's Q index and compared it with another widely used SH index, the Coefficient of Variation (CV), validating them against values of Shannon's H (used as species diversity index) derived from in-situ collected data. A NDVI time-series (for 2016 and 2017) derived from the Sentinel-2A and 2B and Landsat 8 OLI satellites has been used to test the effect of the spatial grain of both the sensors and to understand the seasonality of the SVH. The results showed that the SVH is season and sensor dependent. For both years and satellites, the relation between Rao's Q and field data reached the highest R 2 between June and July, decreasing towards winter and spring similarly to the NDVI time-series. This relationship could be given because, when NDVI reaches its highest values, it is able to capture small variation in reflectance of different leaf traits typical of specific trees. The relation between field and spectral diversity reached a value of R 2 =0.70 (2017) and R 2 =0.48 (2016) for Sentinel-2 and of R 2 =0.42 (2017) and R 2 =0.47 (2016) for Landsat 8. CV showed the same NDVI temporal tendency. However, the relation between field-derived Shannon's H and CV was on average lower than that we found for Rao's Q. This research underlined the goodness of the Rao's Q index, the relevance of the NDVI in the study of the SVH and the importance of the multi-temporal approach.
In mountain areas, land surface temperature (LST) is a key parameter in the surface energy budget and is controlled by a complex interplay of topography, incoming radiation and atmospheric processes, as well as soil moisture distribution, different land covers and vegetation types. In this contribution, the LST spatial distribution of the Stubai Valley in the Austrian Alps is simulated by the ecohydrological model GEOtop. This simulation is compared with ground observations and a Landsat image in order to assess the capacity of the model to represent land surface interactions in complex terrain, as well as to evaluate the relative importance of different environmental factors. The model describes the energy and mass exchanges between soil, vegetation and atmosphere. It takes account of land cover, soil moisture and the implications of topography on air temperature and solar radiation. The GEOtop model is able to reproduce the spatial patterns of the LST distribution estimated from remote sensing, with a correlation coefficient of 0Ð88 and minimal calibration of the model parameters. Results show that, for the humid climate considered in this study, the major factors controlling LST spatial distribution are incoming solar radiation and land cover variability. Along mountain ridges and south-exposed steep slopes, soil moisture distribution has only a minor effect on LST. North-and south-facing slopes reveal a distinct thermal behaviour. In fact, LST appears to follow the air temperature vertical gradient along north-facing slopes, while along south-facing slopes, the LST vertical gradient is strongly modified by land cover type. Both Landsat observations and model simulations confirm field evidence of strong warming of alpine low vegetation during sunny days and indicate that these effects have an impact at a regional scale. Our results indicate that in order to simulate LST in mountain environments using a spatially distributed hydrological model, a key factor is the capacity to explicitly simulate the effects of complex topography on the surface energy exchange processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.