We here show that anergic T cells are active mediators of T cell suppression. In co-culture experiments, we found that anergic T cells, derived from established rat T cell clones and rendered anergic via T cell presentation of the specific antigen (Ag), were active inhibitors of T cell responses. Anergic T cells inhibited not only the responses of T cells with the same Ag specificity as the anergic T cells, but were also capable of efficiently inhibiting polyclonal T cell responses directed to other epitopes. This suppression required close cell-cell contact between antigen-presenting cells (APC), anergic T cells and responder T cells, and only occurred when the epitope recognized by the anergic T cell was present. The suppression was not caused by passive competition for ligands on the APC surface, IL-2 consumption, or cytolysis, and was not mediated by soluble factors derived from anergic T cells that were stimulated with their specific Ag. When responder T cells were added 24 h after co-culturing anergic cells in the presence of Ag and APC, T cell responses were still suppressed, indicating that the suppressive effect was persistently present. However, anergic T cells were not able to suppress responder T cells that had already received a full activation signal. We propose that suppression by anergic T cells is mediated via the APC, either through modulation of the T cell-activating capacity of the APC (APC/T cell interaction), or by inhibition of T cells recognizing their ligand in close proximity on the same APC (T/T cell interaction).
Flow cytometry (FCM) offers a multiparametric technology capable of characterizing single extracellular vesicles (EVs). However, most flow cytometers are designed to detect cells, which are larger than EVs. Whereas cells exceed the background noise, signals originating from EVs partly overlap with the background noise, thereby making EVs more difficult to detect than cells. This technical mismatch together with complexity of EV‐containing fluids causes limitations and challenges with conducting, interpreting and reproducing EV FCM experiments. To address and overcome these challenges, researchers from the International Society for Extracellular Vesicles (ISEV), International Society for Advancement of Cytometry (ISAC), and the International Society on Thrombosis and Haemostasis (ISTH) joined forces and initiated the EV FCM working group. To improve the interpretation, reporting, and reproducibility of future EV FCM data, the EV FCM working group published an ISEV position manuscript outlining a framework of minimum information that should be reported about an FCM experiment on single EVs (MIFlowCyt‐EV). However, the framework contains limited background information. Therefore, the goal of this compendium is to provide the background information necessary to design and conduct reproducible EV FCM experiments. This compendium contains background information on EVs, the interaction between light and EVs, FCM hardware, experimental design and preanalytical procedures, sample preparation, assay controls, instrument data acquisition and calibration, EV characterization, and data reporting. Although this compendium focuses on EVs, many concepts and explanations could also be applied to FCM detection of other particles within the EV size range, such as bacteria, lipoprotein particles, milk fat globules, and viruses.
Heat shock proteins (hsp) are highly conserved, immune-dominant microbial proteins, whose expression is increased at sites of inflammation. In the experimental model of adjuvant arthritis (AA) immune responses to hsp determine the outcome of disease. AA can be transferred with a single T cell clone specific for a sequence of mycobacterial hsp65 (Mhsp65). Immunization with whole Mhsp65 on the other hand, protects in virtually all forms of experimental arthritis, including AA. This protective effect seems the consequence of the induction of a T cell response directed against self-hsp60. A similar protective effect of self-hsp60-specific T cells seems present in patients with a spontaneous remitting form of juvenile idiopathic arthritis. Next to hsp60, other hsp have similar protective effects in arthritis, while other conserved microbial proteins lack such capacity. Nasal administration of hsp60 peptides induces IL-10-driven regulatory T cells that are highly effective in suppressing arthritis. Thus hsp60, or peptides derived from hsp60, are suitable candidates for immune therapy in chronic arthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.