Red lead (Pb 3 O 4 ) has been used extensively in the past as an anti-corrosion paint for the protection of steel constructions. Prominent examples being some of the 200,000 high-voltage pylons in Germany which have been treated with red lead anti-corrosion paints until about 1970. Through weathering and maintenance work, paint compounds and particles are deposited on the soils beneath these constructions. In the present study, six such "pylon soils" were investigated in order to characterize the plant availability and plant uptake of Pb, Cd, and Zn. For comparison, three urban soils with similar levels of heavy metal contamination were included. One phase extractions with 1 M NH 4 NO 3 , sequential extractions (seven steps), and extractions at different soil pH were used to evaluate the heavy metal binding forms in the soil and availability to plants. Greenhouse experiments were conducted to determine heavy metal uptake by Lolium multiflorum and Lactuca sativa var. crispa in untreated and limed red lead paint contaminated soils. Concentrations of Pb and Zn in the pylon soils were elevated with maximum values of 783 mg Pb kg −1 and 635 Zn mg kg −1 while the soil Cd content was similar to nearby reference soils. The pylon soils were characterized by exceptionally high proportions of NH 4 NO 3 -extractable Pb reaching up to 17% of total Pb. Even if the relatively low pH of the soils is considered (pH 4.3-4.9), this appears to be a specific feature of the red lead contamination since similarly contaminated urban soils have to be acidified to pH 2.5 to achieve a similarly high Pb extractability. The Pb content in L. multiflorum shoots reached maximum values of 73 mg kg −1 after a cultivation time of 4 weeks in pylon soil. Lime amendment reduced the plant uptake of Pb and Zn significantly by up to 91%. But L. sativa var. crispa cultivated on soils limed to neutral pH still contained critical Pb concentrations (up to 0.6 mg kg −1 fresh weight). Possible mechanisms for the exceptionally high plant availability of soil Pb derived from red lead paint are discussed.
Red lead (Pb3O4)‐ and ZnO‐containing anticorrosion paints in the past have been extensively applied to high‐voltage steel pylons which has led to heavy metal (HM) soil contaminations in their vicinity. Since pylons are commonly found on agricultural land, there is a potential risk of HM plant uptake. This is promoted by the fact that in contrast to the moderate total Pb contents (several 100 mg kg–1) in three nutrient‐poor and acidic pylon soils the Pb amounts extractable with NH4NO3 were extremely high, reaching almost 20% of total Pb. A 18‐week field pot trial (three harvests in a six‐week interval) using Lolium multiflorum was conducted to study the HM plant uptake and the efficiency of the four soil additives, lime (LI), Novaphos (NP), water‐treatment sludge (WS), and ilmenite residue (IR) in reducing the plant uptake and NH4NO3‐extractability of Pb and Zn in the soils. Lead concentrations in L. multiflorum shoots grown in the untreated soils reached maximum values of 128 mg (kg dry weight)–1. Novaphos was most efficient in decreasing shoot Pb (–90%) followed by LI (–78%) and WS (–73%). For Zn, too, LI (–82%), NP, and WS (both –66%) substantially reduced plant uptake. Ilmenite residue was generally only poorly efficient. The dry‐matter yield in the NP, LI, and WS treatments was significantly increased. While the relationship between Pb‐NH4NO3 and Pb‐plant was high when considering the three harvests separately (R > 0.93) a poor relationship (R = 0.63) exists over all harvests together. This was attributed to different transpiration rates affecting the HM flux into the plants, since the temperature regime changed greatly during the cultivation period. For Zn, no such close relationship between the NH4NO3‐extractable soil fraction and shoot Zn was found, most likely due to antagonistic effects from Mg which greatly varied in the three soils.
Red lead (Pb 3 O 4 ) has been extensively used in the past in anti-corrosion paints for the protection of steel constructions such as electricity pylons or bridges. Until recently, little has been known about the behavior of these Pb compounds in soils. Therefore, three pylon soils and six red lead anti-corrosion paints were characterized in terms of solubility, Pb mineral composition, extractability, sorption and desorption, and the chemical speciation of Pb in soil extracts. The pylon soils were characterized by moderate total Pb concentrations (≈700 mg kg −1 ), while NH 4 NO 3 extractable Pb was exceptionally high (up to 15% of total Pb). In soil extracts, the free Pb 2+ fraction ranged from 33 to 81% of total soluble Pb. The equilibrium concentration of Pb derived from Pb 3 O 4 in ultra-pure water reached 68.5 mg L −1 . This high solubility explains the observed high extractability in soils and contradicts earlier reports of much lower water solubilities of the compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.