Hydrogen sulfide (H2S, 80 ppm) gas in an atmosphere of 17.5% oxygen reportedly induces suspended animation in mice; a state analogous to hibernation that entails hypothermia and hypometabolism. However, exogenous H2S in combination with 17.5% oxygen is able to induce hypoxia, which in itself is a trigger of hypometabolism/hypothermia. Using non-invasive thermographic imaging, we demonstrated that mice exposed to hypoxia (5% oxygen) reduce their body temperature to ambient temperature. In contrast, animals exposed to 80 ppm H2S under normoxic conditions did not exhibit a reduction in body temperature compared to normoxic controls. In conclusion, mice induce hypothermia in response to hypoxia but not H2S gas, which contradicts the reported findings and putative contentions.
Machine perfusion (MP) is a potential method to increase the donor pool for organ transplantation. However, MP systems for liver grafts remain difficult to use because of organ-specific demands. Our aim was to test a novel, portable MP system for hypothermic preservation of the liver. A portable, pressure-regulated, oxygenated MP system designed for kidney preservation was adapted to perfuse liver grafts via the portal vein (PV). Three porcine livers underwent 20 h of hypothermic perfusion using Belzer MP solution. The MP system was assessed for perfusate flow, temperature, venous pressure, and pO2 /pCO2 during the preservation period. Biochemical and histological parameters were analyzed to determine postpreservation organ damage. Perfusate flow through the PV increased over time from 157 ± 25 mL/min at start to 177 ± 25 mL/min after 20 h. PV pressure remained stable at 13 ± 1 mm Hg. Perfusate temperature increased from 9.7 ± 0.6°C at the start to 11.0 ± 0.0°C after 20 h. Aspartate aminotransferase and lactate dehydrogenase increased from 281 ± 158 and 308 ± 171 U/L after 1 h to 524 ± 163 and 537 ± 168 U/L after 20 h, respectively. Blood gas analysis showed a stable pO2 of 338 ± 20 mm Hg before perfusion of the liver and 125 ± 14 mm Hg after 1 h perfusion. The pCO2 increased from 15 ± 5 mm Hg after 1 h to 53 ± 4 mm Hg after 20 h. No histological changes were found after 20 h of MP. This study demonstrated the feasibility of a portable MP system for preservation of the liver and showed that continuous perfusion via the PV can be maintained with an oxygen-driven pump system without notable preservation damage of the organ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.