Metastasis is the process by which cancers spread to distinct sites in the body. It is the principal cause of death in individuals suffering from cancer. For some types of cancer, early detection of metastasis at lymph nodes close to the site of the primary tumor is pivotal for appropriate treatment. Because it can be difficult to detect lymph node metastases reliably, many individuals currently receive inappropriate treatment. We show here that DNA microarray gene-expression profiling can detect lymph node metastases for primary head and neck squamous cell carcinomas that arise in the oral cavity and oropharynx. The predictor, established with an 82-tumor training set, outperforms current clinical diagnosis when independently validated. The 102 predictor genes offer unique insights into the processes underlying metastasis. The results show that the metastatic state can be deciphered from the primary tumor gene-expression pattern and that treatment can be substantially improved.
We have updated the catalogue of common and well-documented (CWD) HLA alleles to reflect current understanding of the prevalence of specific allele sequences. The original CWD catalogue designated 721 alleles at the HLA-A, -B, -C, -DRB1, -DRB3/4/5, -DQA1, -DQB1, and –DPB1 loci in IMGT/HLA Database release 2.15.0 as being CWD. The updated CWD catalogue designates 1122 alleles at the HLA-A, -B, -C, -DRB1, -DRB3/4/5, -DQA1, -DQB1, -DPA1 and –DPB1 loci as being CWD, and represents 14.3% of the HLA alleles in IMGT/HLA Database release 3.9.0. In particular, we identified 415 of these alleles as being “common” (having known frequencies) and 707 as being “well-documented” on the basis of ~140,000 sequence-based typing observations and available HLA haplotype data. Using these allele prevalence data, we have also assigned CWD status to specific G and P designations. We identified 147/151 G groups and 290/415 P groups as being CWD. The CWD catalogue will be updated on a regular basis moving forward, and will incorporate changes to the IMGT/HLA Database as well as empirical data from the histocompatibility and immunogenetics community. This version 2.0.0 of the CWD catalogue is available online at cwd.immunogenomics.org, and will be integrated into the Allele Frequencies Net Database, the IMGT/HLA Database and National Marrow Donor Program’s bioinformatics web pages.
Hypervariable segments of the control region of mtDNA as well as part of the cytochrome b gene of Dunlins were amplifed with PCR and sequenced directly. The 910 base pairs (bp) obtained for each of 73 individuals complete another of the few sequencing studies that examine the global range of a vertebrate species. A total of 35 types of mtDNA were detected, 33 of which were defined by the hypervariablecontrol-region segments. Thirty of the latter were specific to populations of different geographic origin in the circumpolar breeding range of the species. The remaining three types indicate dispersal between populations in southern Norway and Siberia, but female-mediated flow of mtDNA apparently is too low to overcome the effects of high mutation rates of the control-region sequences, as well as population subdivision associated with historical range disjunctions. A genealogical tree relating the types grouped them into five populations:Alaska, West Coast ofNorth America, GulfofMexico, western Europe, and the Taymyr Peninsula. The Dunlin is thus highly structured geographically, with measures of mutational divergence approaching 1.0 for fixation of alternative types in different populations. High diversity of types within populations as well as moderate long-term effective population sizes argue against severe population bottlenecks in promoting this differentiation. Instead, population fragmentation in Pleistocene refuges is the most plausible mechanism of mtDNA differentiation but at a much earlier time scale than suggested previously with morphometric data.The amplification and direct sequencing of highly polymorphic regions of mtDNA provide a potentially rich source of variation at the nucleotide level for determining the molecular population structure within species and the phylogeny of intraspecific lineages. mtDNA is the molecule of choice for such studies because it is nonrecombining and maternally inherited (but see ref. 1) and has a high average rate of evolution. Analyses of sequence variation of the human mtDNA genome, for example, have shown that the noncoding control region harbors the most variability (2-5) and that this variation is located principally in two hypervariable segments (6, 7). In this paper we report the nucleotide sequences ¶ of two hypervariable segments of the control region of73 individual Dunlins and contrast these results with those from a segment of the more slowly evolving cytochrome b gene. We demonstrate that these mtDNA segments can not only elucidate the population genetic structure of this long-distance migrant shorebird over much of its circumpolar breeding range in the arctic tundras of the Northern Hemisphere but also can distinguish subpopulations within composite flocks of birds at more southerly wintering sites or during migration. Additionally, gene flow between populations of breeding birds can be readily detected and quantified.The Dunlin is among the most polytypic species of highly vagile shorebirds, with up to nine subspecies recognized on the basis of v...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.