Face verification has come into increasing focus in various applications including the European Entry/Exit System, which integrates face recognition mechanisms. At the same time, the rapid advancement of biometric authentication requires extensive performance tests in order to inhibit the discriminatory treatment of travellers due to their demographic background. However, the use of face images collected as part of border controls is restricted by the European General Data Protection Law to be processed for no other reason than its original purpose. Therefore, this paper investigates the suitability of synthetic face images generated with StyleGAN and StyleGAN2 to compensate for the urgent lack of publicly available largescale test data. Specifically, two deep learning-based (SER-FIQ, FaceQnet v1) and one standard-based (ISO/IEC TR 29794-5) face image quality assessment algorithm is utilized to compare the applicability of synthetic face images compared to real face images extracted from the FRGC dataset. Finally, based on the analysis of impostor score distributions and utility score distributions, our experiments reveal negligible differences between StyleGAN vs. StyleGAN2, and further also minor discrepancies compared to real face images.
Face Age Progression (FAP) refers to synthesizing face images while simulating ageing effects, thus enabling predicting the future appearance of an individual. The generation of age-progressed face images brings benefits for various applications, ranging from face recognition systems to forensic investigations and digital entertainment. In particular, the recent success achieved with deep generative networks significantly leveraged the quality of age-synthesized face images in terms of visual fidelity, ageing accuracy and identity preservation. However, the high number of contributions in recent years requires systematically structuring new findings and ideas to identify a common taxonomy, accelerate future research and reduce redundancy. Therefore, we present a comparative analysis of recent deep learning based face age progression methods for both adult and child-based face ageing, broken down into three high-level concepts: translation-based, condition-based, and sequence-based FAP. Further, we offer a comprehensive summary of the most common performance evaluation techniques, cross-age datasets, and open challenges to steer future research in the right direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.