Reaction of antimony, selenium, and selenium(IV) chloride in the Lewis acidic ionic liquid [BMIM]Cl/AlCl(3) (BMIM: 1-n-butyl-3-methylimidazolium) at room temperature yielded air-sensitive black block-shaped crystals of [Sb(10)Se(10)][AlCl(4)](2). The triclinic unit cell (space group P1, a=947.85(2), b=957.79(2), c=1166.31(3) pm; α=103.622(1), β=110.318(1), γ=99.868(1)°; Z=1) contains the first mixed antimony/selenium polycation, [Sb(10)Se(10)](2+). The centrosymmetric polycyclic cation consists of two realgar-like [Sb(4)Se(4)] cages, which are connected through positively charged, three-bonded selenium atoms with a central [Sb(2)Se(2)] ring. Quantum chemical calculations predict semiconducting behavior of the compound and indicate primarily covalent bonding with varying ionic contribution within the [Sb(10)Se(10)](2+) polycation, while the interactions between the polycation and the [AlCl(4)](-) anions are predominantly ionic. The applicability of the Zintl concept to the chemical bonding in the heteronuclear polycation was evaluated by a thorough quantum chemical analysis.
The ferrimagnetic and high-capacity electrode material Mn3O4 is encapsulated inside multi-walled carbon nanotubes (CNT). We show that the rigid hollow cavities of the CNT enforce size-controlled nanoparticles which are electrochemically active inside the CNT. The ferrimagnetic Mn3O4 filling is switched by electrochemical conversion reaction to antiferromagnetic MnO. The conversion reaction is further exploited for electrochemical energy storage. Our studies confirm that the theoretical reversible capacity of the Mn3O4 filling is fully accessible. Upon reversible cycling, the Mn3O4@CNT nanocomposite reaches a maximum discharge capacity of 461 mA h g−1 at 100 mA g−1 with a capacity retention of 90% after 50 cycles. We attribute the good cycling stability to the hybrid nature of the nanocomposite: (1) Carbon encasements ensure electrical contact to the active material by forming a stable conductive network which is unaffected by potential cracks of the encapsulate. (2) The CNT shells resist strong volume changes of the encapsulate in response to electrochemical cycling, which in conventional (i.e., non-nanocomposite) Mn3O4 hinders the application in energy storage devices. Our results demonstrate that Mn3O4 nanostructures can be successfully grown inside CNT and the resulting nanocomposite can be reversibly converted and exploited for lithium-ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.