This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
Scope
Intake of flavonoids from the diet can be substantial, and epidemiological studies suggest that these compounds can decrease the incidence of cardiovascular diseases by involvement with increased platelet aggregation. Although parent flavonoids possess antiplatelet effects, the clinical importance is disputable due to their very low bioavailability. Most of them are metabolized by human colon bacteria to smaller phenolic compounds, which reach higher plasma concentrations than the parent flavonoids. In this study, a series of 29 known flavonoid metabolites is tested for antiplatelet potential.
Methods and results
Four compounds appear to have a biologically relevant antiplatelet effect using whole human blood. 4‐Methylcatechol (4‐MC) is clearly the most efficient being about 10× times more active than clinically used acetylsalicylic acid. This ex vivo effect is also confirmed using a potentially novel in‐vivo‐like ex ovo hen's egg model of thrombosis, where 4‐MC significantly increases the survival of the eggs. The mechanism of action is studied and it seems that it is mainly based on the influence on intracellular calcium signaling.
Conclusion
This study shows that some flavonoid metabolites formed by human microflora have a strong antiplatelet effect. This information can help to explain the antiplatelet potential of orally given flavonoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.