Botulinum neurotoxin A (BoNT) and brain-derived neurotrophic factor (BDNF) are known for their ability to influence synaptic inputs to neurons. Here, we tested if these drugs can modulate the deafferentation of motoneurons following nerve section/suture and, as a consequence, modify the outcome of peripheral nerve regeneration. We applied drug solutions to the proximal stump of the freshly cut femoral nerve of adult rats to achieve drug uptake and transport to the neuronal perikarya. The most marked effect of this application was a significant reduction of the axotomy-induced loss of perisomatic cholinergic terminals by BoNT at one week and two months post injury. The attenuation of the synaptic deficit was associated with enhanced motor recovery of the rats 2–20 weeks after injury. Although BDNF also reduced cholinergic terminal loss at 1 week, it had no effect on this parameter at two months and no effect on functional recovery. These findings strengthen the idea that persistent partial deafferentation of axotomized motoneurons may have a significant negative impact on functional outcome after nerve injury. Intraneural application of drugs may be a promising way to modify deafferentation and, thus, elucidate relationships between synaptic plasticity and restoration of function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.