In head and neck squamous cell carcinoma (HNSCC) pathologic cervical lymph nodes (LN) remain important negative predictors. Current criteria for LN-classification in contrast-enhanced computed-tomography scans (contrast-CT) are shape-based; contrast-CT imagery allows extraction of additional quantitative data (“features”). The data-driven technique to extract, process, and analyze features from contrast-CTs is termed “radiomics”. Extracted features from contrast-CTs at various levels are typically redundant and correlated. Current sets of features for LN-classification are too complex for clinical application. Effective eliminative feature selection (EFS) is a crucial preprocessing step to reduce the complexity of sets identified. We aimed at exploring EFS-algorithms for their potential to identify sets of features, which were as small as feasible and yet retained as much accuracy as possible for LN-classification. In this retrospective cohort-study, which adhered to the STROBE guidelines, in total 252 LNs were classified as “non-pathologic” (n = 70), “pathologic” (n = 182) or “pathologic with extracapsular spread” (n = 52) by two experienced head-and-neck radiologists based on established criteria which served as a reference. The combination of sparse discriminant analysis and genetic optimization retained up to 90% of the classification accuracy with only 10% of the original numbers of features. From a clinical perspective, the selected features appeared plausible and potentially capable of correctly classifying LNs. Both the identified EFS-algorithm and the identified features need further exploration to assess their potential to prospectively classify LNs in HNSCC.
Locally-advanced head and neck squamous cell carcinoma (HNSCC) is mainly defined by the presence of pathologic cervical lymph nodes (LNs) with or without extracapsular spread (ECS). Current radiologic criteria to classify LNs as non-pathologic, pathologic, or pathologic with ECS are primarily shape-based. However, significantly more quantitative information is contained within imaging modalities. This quantitative information could be exploited for classification of LNs in patients with locally-advanced HNSCC by means of artificial intelligence (AI). Currently, various reviews exploring the role of AI in HNSCC are available. However, reviews specifically addressing the current role of AI to classify LN in HNSCC-patients are sparse. The present work systematically reviews original articles that specifically explore the role of AI to classify LNs in locally-advanced HNSCC applying Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines and the Study Quality Assessment Tool of National Institute of Health (NIH). Between 2001 and 2022, out of 69 studies a total of 13 retrospective, mainly monocentric, studies were identified. The majority of the studies included patients with oropharyngeal and oral cavity (9 and 7 of 13 studies, respectively) HNSCC. Histopathologic findings were defined as reference in 9 of 13 studies. Machine learning was applied in 13 studies, 9 of them applying deep learning. The mean number of included patients was 75 (SD ± 72; range 10–258) and of LNs was 340 (SD ± 268; range 21–791). The mean diagnostic accuracy for the training sets was 86% (SD ± 14%; range: 43–99%) and for testing sets 86% (SD ± 5%; range 76–92%). Consequently, all of the identified studies concluded AI to be a potentially promising diagnostic support tool for LN-classification in HNSCC. However, adequately powered, prospective, and randomized control trials are urgently required to further assess AI’s role in LN-classification in locally-advanced HNSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.