Cellulose nanocrystals (CNCs) are topical in materials science but their full potential is yet to be fulfilled because of bottlenecks in the production: the process consumes huge amounts of water, recycling the strong acid catalyst is difficult, and purification steps are cumbersome, particularly with lengthy dialysis. Production of CNCs with HCl vapour overcomes many of these difficulties but the dispersion of CNCs from the already hydrolysed fibre matrix is a formidable challenge. This study is a fundamental effort to explore very basic means to facilitate CNC dispersion from cotton linter fibres (filter paper), hydrolysed to levelling off degree of polymerization by HCl vapour. The introduction of carboxylic groups on the cellulose crystal surface proved the most efficient method to alleviate dispersion with good yields (ca. 50%) and a provisional possibility to tune the CNC length. By contrast, attempts to directly disperse untreated hydrolysed fibres in various organic solvents and aqueous surfactant solutions were unsuccessful. The results showed that hydrolysis of native cellulose fibres by HCl vapour is indeed a viable method for producing CNCs but it has more potential as a pre-treatment step rather than a full-fledged process on its own.
Clickable core-shell nanoparticles based on poly(styrene-co-divinylbenzene-co-vinylbenzylazide) have been synthesized via emulsion polymerization. The 38 nm sized particles have been swollen by divinyl benzene (DVB) and 2,2’-azobis(2-methylpropionitrile) (AIBN) and subsequently processed under high shear rates in a Z-shaped microchannel giving macroporous microclusters (100 µm), through the reactive gelation process. The obtained clusters were post-functionalized by “click-chemistry” with propargyl-PEG-NHS-ester and propargylglicidyl ether, yielding epoxide or NHS-ester activated polymer supports for bioconjugation. Macroporous affinity materials for antibody capturing were produced by immobilizing recombinant Staphylococcus aureus protein A on the polymeric support. Coupling chemistry exploiting thiol-epoxide ring-opening reactions with cysteine-containing protein A revealed up to three times higher binding capacities compared to the protein without cysteine. Despite the lower binding capacities compared to commercial affinity phases, the produced polymer–protein hybrids can serve as stationary phases for immunoglobulin affinity chromatography as the materials revealed superior intra-particle mass transports.
Alkyne‐terminated polyelectrolytic brushes based on 3‐sulfopropyl methacrylate are synthesized by reversible addition‐fragmentation chain transfer polymerization and subsequently linked to macroporous polymeric microclusters by Cu(I)‐catalyzed azide alkyne cycloaddition. It is shown that a column packed with the obtained material enables convective cation‐exchange chromatography of proteins, exhibiting flow rate independent resolution and dynamic binding capacity (8 mg mL−1). These flow characteristics are similar to those of monoliths and membranes and therefore improve the mass transport of existing chromatography resins used in the downstream process of therapeutic proteins, while the positive aspects of chromatographic beads are maintained, facilitating implementation in well‐developed platform technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.