The field oriented control (FOC) strategy of the permanent magnet synchronous motor (PMSM) includes all the advantages deriving from the simplicity of using PI-type controllers, but inherently the control performances are limited due to the nonlinear model of the PMSM, the need for wide-range and high-dynamics speed and load torque control, but also due to the parametric uncertainties which occur especially as a result of the variation of the combined rotor-load moment of inertia, and of the load resistance. Based on the fractional calculus for the integration and differentiation operators, this article presents a number of fractional order (FO) controllers for the PMSM rotor speed control loops, and id and iq current control loops in the FOC-type control strategy. The main contribution consists of proposing a PMSM control structure, where the controller of the outer rotor speed control loop is of FO-sliding mode control (FO-SMC) type, and the controllers for the inner control loops of id and iq currents are of FO-synergetic type. Superior performances are obtained by using the control system proposed, even in the case of parametric variations. The performances of the proposed control system are validated both by numerical simulations and experimentally, through the real-time implementation in embedded systems.
Power transformers play an important role in electrical systems; being considered the core of electric power transmissions and distribution networks, the owners and users of these assets are increasingly concerned with adopting reliable, automated, and non-invasive techniques to monitor and diagnose their operating conditions. Thus, monitoring the conditions of power transformers has evolved, in the sense that a complete characterization of the conditions of oil–paper insulation can be achieved through dissolved gas analysis (DGA) and furan compounds analysis, since these analyses provide a lot of information about the phenomena that occur in power transformers. The Duval triangles and pentagons methods can be used with a high percentage of correct predictions compared to the known classical methods (key gases, International Electrotechnical Commission (IEC), Rogers, Doernenburg ratios), because, in addition to the six types of basic faults, they also identify four sub-types of thermal faults that provide important additional information for the appropriate corrective actions to be applied to the transformers. A new approach is presented based on the complementarity between the analysis of the gases dissolved in the transformer oil and the analysis of furan compounds, for the identification of the different faults, especially when there are multiple faults, by extending the diagnosis of the operating conditions of the power transformers, in terms of paper degradation. The implemented software system based on artificial neural networks was tested and validated in practice, with good results.
The field-oriented control (FOC) strategy of a permanent magnet synchronous motor (PMSM) in a simplified form is based on PI-type controllers. In addition to their low complexity (an advantage for real-time implementation), these controllers also provide limited performance due to the nonlinear character of the description equations of the PMSM model under the usual conditions of a relatively wide variation in the load torque and the high dynamics of the PMSM speed reference. Moreover, a number of significant improvements in the performance of PMSM control systems, also based on the FOC control strategy, are obtained if the controller of the speed control loop uses sliding mode control (SMC), and if the controllers for the inner control loops of idand iqcurrents are of the synergetic type. Furthermore, using such a control structure, very good performance of the PMSM control system is also obtained under conditions of parametric uncertainties and significant variations in the combined rotor-load moment of inertia and the load resistance. To improve the performance of the PMSM control system without using controllers having a more complicated mathematical description, the advantages provided by reinforcement learning (RL) for process control can also be used. This technique does not require the exact knowledge of the mathematical model of the controlled system or the type of uncertainties. The improvement in the performance of the PMSM control system based on the FOC-type strategy, both when using simple PI-type controllers or in the case of complex SMC or synergetic-type controllers, is achieved using the RL based on the Deep Deterministic Policy Gradient (DDPG). This improvement is obtained by using the correction signals provided by a trained reinforcement learning agent, which is added to the control signals ud, uq, and iqref. A speed observer is also implemented for estimating the PMSM rotor speed. The PMSM control structures are presented using the FOC-type strategy, both in the case of simple PI-type controllers and complex SMC or synergetic-type controllers, and numerical simulations performed in the MATLAB/Simulink environment show the improvements in the performance of the PMSM control system, even under conditions of parametric uncertainties, by using the RL-DDPG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.