In many flowering plants, asymmetric division of the zygote generates apical and basal cells with different fates. In Arabidopsis thaliana, the apical cell generates the embryo while the basal cell divides anticlinally, leading to a suspensor of 6-9 cells that remain extra-embryonic and eventually senesce. In some genetic backgrounds, or upon ablation of the embryo, suspensor cells can undergo periclinal cell divisions and eventually form a second, twin embryo. Likewise, embryogenesis can be induced from somatic cells by various genes, but the relation to suspensor-derived embryos is unclear. Here, we addressed the nature of the suspensor to embryo fate transformation, and its genetic triggers. We expressed most known embryogenesis-inducing genes specifically in suspensor cells. We next analyzed morphology and fate marker expression in embryos in which suspensor division were activated by different triggers to address the developmental paths towards reprogramming. Our results show that reprogramming of Arabidopsis suspensor cells towards embryonic identity is a specific cellular response that is triggered by defined regulators, follows a conserved developmental trajectory and shares similarity to the process of somatic embryogenesis from post-embryonic tissues.
In many flowering plants, including Arabidopsis thaliana, asymmetric division of the zygote generates apical and basal cells with different fates. The apical cell continues to produce the embryo while the basal cell undergoes a restricted number of anticlinal divisions leading to a suspensor of 6-9 quiescent cells that remain extra-embryonic and eventually senesce. In some genetic backgrounds, or upon ablation of the embryo, suspensor cells can however undergo periclinal cell divisions and eventually form a second, twin seedling. Likewise, embryogenesis can be induced from somatic cells by various genes, but the relation to suspensor-derived embryos is unclear. Here, we addressed the nature of the suspensor to embryo fate transformation, and its genetic triggers. We expressed most known embryogenesis-inducing transcriptional regulators and receptor-like kinases specifically in suspensor cells. Among these, only RKD1 and WUS could induce a heritable twin seedling phenotype. We next analyzed morphology and fate marker expression in embryos in which suspensor division were activated by different triggers to address the developmental paths towards reprogramming. Our results show that reprogramming of Arabidopsis suspensor cells towards embryonic identity is a specific cellular response that is triggered by defined regulators, follows a conserved developmental trajectory and shares similarity to the process of somatic embryogenesis from post-embryonic tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.