Khat (Catha edulis) chewing is widespread in the region of East Africa. Even low levels of organochlorine pesticides (OCPs) in khat could induce public health concern. In a market-based study, from five popular khat varieties, a total of 35 composite khat samples were analyzed for dichlorodiphenyltrichloroethane (DDT) and its main transformation products, and four hexachlorocyclohexane (HCH) isomers. Extraction was carried out by quick, easy, cheap, effective, rugged and safe method (QuEChERS). OCP concentrations were determined by head space solid phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME–GC–MS). Every sample contained β-HCH above the maximum residue limit set by the European Commission. For total DDT, this was the case for 25.7% of the samples. The ratios of (p,p′-DDD + p,p′-DDE) to p,p′-DDT were less than one for 85% of khat samples, demonstrating recent use of DDT in khat farmlands. Conversely, the ratio of β-HCH to total HCH varied from 0.56 to 0.96, implying historical input of technical HCH. Assuming a daily chewable portion of 100 g, dietary intakes of p,p′-DDT, total DDT and total HCH by adults ranged from 3.12 to 57.9, 6.49 to 80.2 and 39.2 to 51.9 ng (kg body weight)−1 day−1, respectively. These levels are below acceptable levels suggested by international organizations. Chewing khat showed lower non-cancer health risk, but showed relatively higher cancer risk in terms of OCPs. Because khat is chewed without being subjected to any treatment, uncertainties associated with estimated intakes and health risks should be low. Therefore, this practice is of great concern.
Purpose Organochlorine pesticides (OCPs) like lindane and DDT have been used extensively after World War II until the 1990s. Still, residues of these pesticides can be found in agricultural soils all over the world, especially in developing countries. Often, they occur in extensive areas and elevated concentrations so that food safety is jeopardized. Hence, simple, cheap, and fast analytical methods are needed for a straight-forward assessment of risks. A miniaturized solid–liquid extraction combined with solid-phase microextraction (SPME) based on a proven ISO method is presented. Methods The performance of the method is evaluated by extracting three different soils which were spiked with HCH and DDT congeners, and trifluralin, and aged for 35 days. The results are compared with those of a modified quick, easy, cheap, efficient, rugged, and safe (QuEChERS) method. For further validation, both methods are applied to three environmental soil samples. Results Validation results show limits of detection and quantification as well as recovery rates in good agreement with standard requirements. The new method was found to be quicker than QuEChERS, which requires time-consuming preparation of reagents. Conclusion Merits include low time and sample volume requirements (0.5 g) and the possibility to extract many samples simultaneously, which allows the screening of large sample sizes to determine the pollution status of whole landscape regions. However, access to an automated SPME apparatus is assumed. The authors can recommend this method as a cheap and fast alternative where SPME is available.
The suitability of lake sediment cores to reconstruct past inputs, regional pollution, and usage patterns of pesticides has been shown previously. Until now, no such data exist for lakes in eastern Germany. Therefore, 10 sediment cores (length 1 m) of 10 lakes in eastern Germany, the territory of the former German Democratic Republic (GDR), were collected and cut into 5–10-mm layers. In each layer, concentrations of trace elements (TEs) As, Cd, Cr, Cu, Ni, Pb, S, and Zn, as well as of organochlorine pesticides (OCPs), i.e., dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH), were analyzed. A miniaturized solid–liquid extraction technique in conjunction with headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC–MS) was used for the latter. The progression of TE concentrations over time is uniform. It follows a trans-regional pattern and is indicative of activity and policy making in West Germany before 1990 instead of those in the GDR. Of OCPs, only transformation products of DDT were found. Congener ratios indicate a mainly aerial input. In the lakes’ profiles, several regional features and responses to national policies and measures are visible. Dichlorodiphenyldichloroethane (DDD) concentrations reflect the history of DDT use in the GDR. Lake sediments proved to be suitable to archive short- and long-range impacts of anthropogenic activity. Our data can be used to complement and validate other forms of environmental pollution long-term monitoring and to check for the efficiency of pollution countermeasures in the past.
The suitability of lake sediment cores to reconstruct past inputs, regional pollution, and usage patterns of pesticides has been shown previously. Until now, no such data exist for lakes in eastern Germany. Therefore, ten sediment cores (length 1 m) of ten lakes in eastern Germany, the territory of the former German Democratic Republic (GDR), were collected and cut into 5-10 mm layers. In each layer, concentrations of trace elements (TEs) As, Cd, Cr, Cu, Ni, Pb, S, Zn, as well as of organochlorine pesticides (OCPs) were analyzed. A miniaturized solid-liquid extraction technique in conjunction with headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) was used for the latter. Of OCPs, only transformation products of dichlorodiphenyltrichloroethane (DDT) were found. Congener ratios indicate a mainly aerial input. In the lakes’ profiles, several regional features and also responses to national policies and measures are visible. Dichlorodiphenyldichloroethane (DDD) concentrations reflect the history of DDT use in the GDR. TEs show a uniform progression over time. They follow a trans-regional pattern and are indicative of activity and policy making in West Germany before 1990 instead of those in the GDR. Lake sediments proved to be suitable to archive short- and long-range impacts of anthropogenic activity. Our data can be used to complement and validate other forms of environmental pollution long-term monitoring and check for the efficiency of pollution counter measures in the past.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.