We propose a deep convolutional object detector for automated driving applications that also estimates classification, pose and shape uncertainty of each detected object. The input consists of a multi-layer grid map which is well-suited for sensor fusion, free-space estimation and machine learning. Based on the estimated pose and shape uncertainty we approximate object hulls with bounded collision probability which we find helpful for subsequent trajectory planning tasks. We train our models based on the KITTI object detection data set. In a quantitative and qualitative evaluation some models show a similar performance and superior robustness compared to previously developed object detectors. However, our evaluation also points to undesired data set properties which should be addressed when training datadriven models or creating new data sets.− log E(ŝ) ≈ 1 J J j=1
Sensor-based sorting offers cutting-edge solutions for separating granular materials. The line-scanning sensors currently in use in such systems only produce a single observation of each object and no data on its movement. According to recent studies, using an area-scan camera has the potential to reduce both characterization and separation error in a sorting process. A predictive tracking approach based on Kalman filters makes it possible to estimate the followed paths and parametrize a unique motion model for each object using a multiobject tracking system. While earlier studies concentrated on physically-motivated motion models, it has been demonstrated that novel machine learning techniques produce predictions that are more accurate. In this paper, we describe the creation of a predictive tracking system based on neural networks. The new algorithm is applied to an experimental sorting system and to a numerical model of the sorter. Although the new approach does not yet fully reach the achieved sorting quality of the existing approaches, it allows the use of the general method without requiring expert knowledge or a fundamental understanding of the parameterization of the particle motion model.
Dedicated to Prof. Dr.-Ing. Joachim Werther on the occasion of his 80th birthday A DEM-CFD (discrete element method -computational fluid dynamics) model of an optical belt sorter was extensively compared with experiments of a laboratory-scale sorter to assess the model's accuracy. Brick and sand-lime brick were considered as materials. First, the transport characteristics on the conveyor belt, involving mass flow, lateral particle distribution and proximity, were compared. Second, sorting results were benchmarked for varying mixture proportions at differing mass flows. It was found that the numerical model is able to reproduce the experimental results with high accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.