PurposeA principle prerequisite for designing and constructing an underground structure is to estimate the subsurface's properties and obtain a realistic picture of stratigraphy. Obtaining direct measure of these values in any location of the built environment is not affordable. Therefore, any evaluation is afflicted with uncertainty, and we need to combine all available measurements, observations and previous knowledge to achieve an informed estimate and quantify the involved uncertainties. This study aims to enhance the geotechnical surveys based on a spatial estimation of subsoil to customised data structures and integrating the ground models into digital design environments.Design/methodology/approachThe present study's objective is to enhance the geotechnical surveys based on a spatial estimation of subsoil to customised data structures and integrating the ground models into digital design environments. A ground model consisting of voxels is developed via Revit-Dynamo to represent spatial uncertainties employing the kriging interpolation method. The local arrangement of new surveys are evaluated to be optimised.FindingsThe visualisation model's computational performance is modified by using an octree structure. The results show that it adapts the structure to be modelled more efficiently. The proposed concept can identify the geological models' risky locations for further geological investigations and reveal an optimised experimental design. The modifications criteria are defined in global and local considerations.Originality/valueIt provides a transparent and repeatable approach to construct a spatial ground model for subsequent experimental or numerical analysis. In the first attempt, the ground model was discretised by a grid of voxels. In general, the required computing time primarily depends on the size of the voxels. This issue is addressed by implementing octree voxels to reduce the computational efforts. This applies especially to the cases that a higher resolution is required. The investigations using a synthetic soil model showed that the developed methodology fulfilled the kriging method's requirements. The effects of variogram parameters, such as the range and the covariance function, were investigated based on some parameter studies. Moreover, a synthetic model is used to demonstrate the optimal experimental design concept. Through the implementation, alternative locations for new boreholes are generated, and their uncertainties are quantified. The impact of the new borehole on the uncertainty measures are quantified based on local and global approaches. For further research to identify the geological models' risky spots, the development of this approach with additional criteria regarding the search neighbourhood and consideration of barriers and trends in real cases (by employing different interpolation methodologies) should be considered.
In the operating phase of a road tunnel, not only maintaining or increasing the availability in the network but the economic optimization regarding the life cycle costs of the structure are also important priorities. A consistent application of the Building Information Modelling (BIM) methodology can theoretically make a useful and targeted contribution, as it provides a complete digital model of the structure with all installed elements and the information required for the operator tasks. In the research project FE https://doi.org/15.0623/2016/RRB ”Building Information Modeling (BIM) in Tunneling,“ the Institute of Tunneling and Construction Management and the Institute of Computing in Engineering (both Ruhr University Bochum) in cooperation with BUNG Ingenieure AG developed the basics for a BIM‐based operating model of road tunnels with funding from the Federal Highway Research Institute commissioned by the Federal Ministry of Transport and Digital Infrastructure. In the article, the results of the research are presented on the basis of specific use cases of a BIM‐based operation and maintenance management.
Digital design methods are constantly improving the planning procedure in tunnel construction. This development includes the implementation of rule-based systems, concepts for cross-document and -model data integration, and new evaluation concepts that exploit the possibilities of digital design. For planning in tunnel construction and alignment selection, integrated planning environments are created, which help in decision-making through interactive use. By integrating room-ware products, such as touch tables and virtual reality devices, collaborative approaches are also considered, in which decision-makers can be directly involved in the planning process. In current tunneling practice and during planning stage, Finite Element (FE) simulations form an integral element in the planning and the design phase of mechanized tunneling projects. The generation of adequate computational models is often time consuming and requires data from many different sources. Incorporating Building Information Modeling (BIM) concepts offers opportunities to simplify this process by using geometrical BIM sub-models as a basis for structural analyses. In the following chapter, some modern possibilities of digital planning and evaluation of alignments in tunnel construction are explained in more detail. Furthermore, the conception and implementation of an interactive BIM and GIS integrated planning system, ‘‘BIM-to-FEM’’ technology which automatically extracts relevant information needed for FE simulations from BIM sub-models, the establishment of surrogate models for real-time predictions, as well as the evaluation and comparison of planning variants are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.