Advances in super-resolution microscopy have demonstrated single-molecule localization precisions of a few nanometers. However, translation of such high localization precisions into sub-10-nm spatial resolution in biological samples remains challenging. Here we show that resonance energy transfer between fluorophores separated by less than 10 nm results in accelerated fluorescence blinking and consequently lower localization probabilities impeding sub-10-nm fluorescence imaging. We demonstrate that time-resolved fluorescence detection in combination with photoswitching fingerprint analysis can be used to determine the number and distance even of spatially unresolvable fluorophores in the sub-10-nm range. In combination with genetic code expansion with unnatural amino acids and bioorthogonal click labeling with small fluorophores, photoswitching fingerprint analysis can be used advantageously to reveal information about the number of fluorophores present and their distances in the sub-10-nm range in cells.
The angiotensin-converting enzyme 2 (ACE2) has been identified as entry receptor on cells enabling binding and infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via trimeric spike (S) proteins protruding from the viral surface. It has been suggested that trimeric S proteins preferably bind to plasma membrane areas with high concentrations of possibly multimeric ACE2 receptors to achieve a higher binding and infection efficiency. Here we used direct stochastic optical reconstruction microscopy (dSTORM) in combination with different labeling approaches to visualize the distribution and quantify the expression of ACE2 on different cells. Our results reveal that endogenous ACE2 receptors are present as monomers in the plasma membrane with densities of only 1-2 receptors μm À 2 . In addition, binding of trimeric S proteins does not induce the formation of ACE2 oligomers in the plasma membrane. Supported by infection studies using vesicular stomatitis virus (VSV) particles bearing S proteins our data demonstrate that a single S protein interaction per virus particle with a monomeric ACE2 receptor is sufficient for infection, which provides SARS-CoV-2 a high infectivity.
Advances in superresolution microscopy demonstrated single-molecule localization precisions of a few nanometers. However, translation of such high localization precisions into sub-10 nm spatial resolution in biological samples remains challenging. Here, we show that resonance energy transfer between fluorophores separated by less than 10 nm results in accelerated fluorescence blinking and consequently lower localization probabilities impeding sub-10 nm fluorescence imaging. We demonstrate that time-resolved fluorescence detection in combination with photoswitching fingerprint analysis can be used advantageously to determine the number and distance even of spatially unresolvable fluorophores in the sub-10 nm range. In combination with genetic code expansion (GCE) with unnatural amino acids and bioorthogonal click-labeling with small fluorophores photoswitching fingerprint analysis enables sub-10 nm resolution fluorescence imaging in cells.
The angiotensin-converting enzyme 2 (ACE2) has been identified as entry receptor on cells enabling binding and infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via trimeric spike (S) proteins protruding from the viral surface. It has been suggested that trimeric S proteins preferably bind to plasma membrane areas with high concentrations of preferably multimeric ACE2 receptors to achieve a higher binding and infection efficiency. However, our current knowledge about the influence of ACE2 expression and organization in the plasma membrane on SARS-CoV-2 infection efficiency remains elusive. Here we used direct stochastic optical reconstruction microscopy (dSTORM) in combination with different labeling approaches to visualize the distribution and quantify the expression of ACE2 on different cells. Our results reveal that endogenous ACE2 receptors are present as monomers in the plasma membrane with densities of only 1-2 receptors um-2. In addition, binding of trimeric S proteins does not induce clustering of ACE2 receptors in the plasma membrane. Supported by infection studies using vesicular stomatitis virus (VSV) particles bearing S proteins our data demonstrate that a single S protein interaction per virus particle with a monomeric ACE2 receptor is sufficient for infection which attests SARS-CoV-2 a high infectivity.
The introduction of an engineered aminoacyl–tRNA synthetase/tRNA pair enables site‐specific incorporation of unnatural amino acids (uAAs) with functionalized side chains into proteins of interest. Genetic Code Expansion (GCE) via amber codon suppression confers functionalities to proteins but can also be used to temporally control the incorporation of genetically encoded elements into proteins. Here, we report an optimized GCE system (GCEXpress) for efficient and fast uAA incorporation. We demonstrate that GCEXpress can be used to efficiently alter the subcellular localization of proteins within living cells. We show that click labeling can resolve co‐labeling problems of intercellular adhesive protein complexes. We apply this strategy to study the adhesion G protein‐coupled receptor (aGPCR) ADGRE5/CD97 and its ligand CD55/DAF that play central roles in immune functions and oncological processes. Furthermore, we use GCEXpress to analyze the time course of ADGRE5‐CD55 ligation and replenishment of mature receptor‐ligand complexes. Supported by fluorescence recovery after photobleaching (FRAP) experiments our results show that ADGRE5 and CD55 form stable intercellular contacts that may support transmission of mechanical forces onto ADGRE5 in a ligand‐dependent manner. We conclude that GCE in combination with biophysical measurements can be a useful approach to analyze the adhesive, mechanical and signaling properties of aGPCRs and their ligand interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.