BackgroundIncreased access to HIV testing is essential in working towards universal access to HIV prevention and treatment in resource-limited countries. We here evaluated currently used HIV diagnostic tests and algorithms in Cameroon for their ability to correctly identify HIV infections.MethodsWe estimated sensitivity, specificity, and positive and negative predictive values of 5 rapid/simple tests, of which 3 were used by the national program, and 2 fourth generation ELISAs. The reference panel included 500 locally collected samples; 187 HIV -1 M, 10 HIV-1 O, 259 HIV negative and 44 HIV indeterminate plasmas.ResultsNone of the 5 rapid assays and only 1 ELISA reached the current WHO/UNAIDS recommendations on performance of HIV tests of at least 99% sensitivity and 98% specificity. Overall, sensitivities ranged between 94.1% and 100%, while specificities were 88.0% to 98.8%. The combination of all assays generated up to 9% of samples with indeterminate HIV status, because they reacted discordantly with at least one of the different tests. Including HIV indeterminate samples in test efficiency calculations significantly decreased specificities to a range from 77.9% to 98.0%. Finally, two rapid assays failed to detect all HIV-1 group O variants tested, with one rapid test detecting only 2 out of 10 group O specimens.ConclusionIn the era of ART scaling-up in Africa, significant proportions of false positive but also false negative results are still observed with HIV screening tests commonly used in Africa, resulting in inadequate treatment and prevention strategies. Depending on tests or algorithms used, up to 6% of HIV-1 M and 80% of HIV-1 O infected patients in Cameroon do not receive ART and adequate counseling to prevent further transmission due to low sensitivities. Also, the use of tests with low specificities could imply inclusion of up to 12% HIV negative people in ART programs and increase budgets in addition to inconveniences caused to patients.
Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century.
The existence of various highly divergent HIV-1 lineages and of recombination-derived sequence tracts of indeterminate origin within established circulating recombinant forms (CRFs) strongly suggests that HIV-1 group M (HIV-1M) diversity is not fully represented under the current classification system. Here we used a fully exploratory screen for recombination on a set of 480 near-full-length genomes representing the full known diversity of HIV-1M. We decomposed recombinant sequences into their constituent parts and then used maximum-likelihood phylogenetic analyses of this mostly recombination-free data set to identify rare divergent sequence lineages that fall outside the major named HIV-1M taxonomic groupings. We found that many of the sequence fragments occurring within CRFs (including CRF04_cpx, CRF06_cpx, CRF11_cpx, CRF18_cpx, CRF25_cpx, CRF27_cpx, and CRF49_cpx) are in fact likely derived from divergent unclassified parental lineages that may predate the current subtypes, even though they are presently identified as derived from currently defined HIV-1M subtypes. Our evidence suggests that some of these CRFs are descended predominantly from what were or are major previously unidentified HIV-1M lineages that were likely epidemiologically relevant during the early stages of the HIV-1M epidemic. The restriction of these divergent lineages to the Congo basin suggests that they were less infectious and/or simply not present at the time and place of the initial migratory wave that triggered the global epidemic. A ll HIV-1 group M (HIV-1M) viruses that infect humans cluster phylogenetically within a clade of SIVcpz sequences sampled in southern Cameroon, leading to the conclusion that it is likely that Cameroon was the site of the cross-species transmission event that gave rise to HIV-1M (1, 2). Consistent with the hypothesis that the Congo basin region was the epicenter of the epidemic, the greatest genetic diversity of HIV-1M in terms of both numbers of subtypes and degree of genetic diversity within subtypes has been observed in this region (3-7). The different subtypes that today account for the vast majority of HIV-1M infections worldwide likely moved out from this region, each to populate different parts of the world, during the 1950s and 1960s (8, 9).The HIV-1M classification system that we presently employ is based largely on the order in which these various pandemic HIV-1M lineages were discovered. Viruses discovered early on tended to be classified as belonging to "pure" subtypes, and there has been an understandable tendency for more recently discovered viruses with inconsistent degrees of similarity across their genomes to these pure subtypes to be classified as "recombinant forms" (10). While some of these recombinant forms have only ever been sampled from a single individual (in which case they are called unique recombinant forms [URFs]), others have been sampled from multiple unlinked individuals and are thus called circulating recombinant forms (CRFs). This classification system has Citati...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.