Counting and uniform sampling of directed acyclic graphs (DAGs) from a Markov equivalence class are fundamental tasks in graphical causal analysis. In this paper, we show that these tasks can be performed in polynomial time, solving a long-standing open problem in this area. Our algorithms are effective and easily implementable. Experimental results show that the algorithms significantly outperform state-of-the-art methods.
Counting and sampling directed acyclic graphs from a Markov equivalence class are fundamental tasks in graphical causal analysis. In this paper, we show that these tasks can be performed in polynomial time, solving a long-standing open problem in this area. Our algorithms are effective and easily implementable. Experimental results show that the algorithms significantly outperform state-of-the-art methods.
Counting and sampling directed acyclic graphs from a Markov equivalence class are fundamental tasks in graphical causal analysis. In this paper we show that these tasks can be performed in polynomial time, solving a long-standing open problem in this area. Our algorithms are effective and easily implementable. As we show in experiments, these breakthroughs make thought-to-be-infeasible strategies in active learning of causal structures and causal effect identification with regard to a Markov equivalence class practically applicable.
Linear structural equation models represent direct causal effects as directed edges and confounding factors as bidirected edges. An open problem is to identify the causal parameters from correlations between the nodes. We investigate models, whose directed component forms a tree, and show that there, besides classical instrumental variables, missing cycles of bidirected edges can be used to identify the model. They can yield systems of quadratic equations that we explicitly solve to obtain one or two solutions for the causal parameters of adjacent directed edges. We show how multiple missing cycles can be combined to obtain a unique solution. This results in an algorithm that can identify instances that previously required approaches based on Gröbner bases, which have doublyexponential time complexity in the number of structural parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.