Abstract. We study the dependence structure of market states by estimating empirical pairwise copulas of daily stock returns. We consider both original returns, which exhibit time-varying trends and volatilities, as well as locally normalized ones, where the non-stationarity has been removed. The empirical pairwise copula for each state is compared with a bivariate K-copula. This copula arises from a recently introduced random matrix model, in which non-stationary correlations between returns are modeled by an ensemble of random matrices. The comparison reveals overall good agreement between empirical and analytical copulas, especially for locally normalized returns. Still, there are some deviations in the tails. Furthermore, we find an asymmetry in the dependence structure of market states. The empirical pairwise copulas exhibit a stronger lower tail dependence, particularly in times of crisis.
All too often measuring statistical dependencies between financial time series is reduced to a linear correlation coefficient. However this may not capture all facets of reality. We study empirical dependencies of daily stock returns by their pairwise copulas. Here we investigate particularly to which extent the non-stationarity of financial time series affects both the estimation and the modeling of empirical copulas. We estimate empirical copulas from the non-stationary, original return time series and stationary, locally normalized ones. Thereby we are able to explore the empirical dependence structure on two different scales: a global and a local one. Additionally the asymmetry of the empirical copulas is emphasized as a fundamental characteristic. We compare our empirical findings with a single Gaussian copula, with a correlation-weighted average of Gaussian copulas, with the K-copula directly addressing the non-stationarity of dependencies as a model parameter, and with the skewed Student's t-copula. The K-copula covers the empirical dependence structure on the local scale most adequately, whereas the skewed Student's t-copula best captures the asymmetry of the empirical copula on the global scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.