The acrosome reaction is a unique type of regulated exocytosis. The single secretory granule of the sperm fuses at multiple points with the overlying plasma membrane. In the past few years we have characterized several aspects of this process using streptolysin O-permeabilized human spermatozoa. Here we show that Rab3A triggers acrosomal exocytosis in the virtual absence of calcium in the cytosolic compartment. Interestingly, exocytosis is blocked when calcium is depleted from intracellular stores. By using a membrane-permeant fluorescent calcium probe, we observed that the acrosome actually behaves as a calcium store. Depleting calcium from this compartment by using a light-sensitive chelator prevents secretion promoted by Rab3A. UV inactivation of the chelator restores exocytosis. Rab3A-triggered exocytosis is blocked by calcium pump and inositol 1,4,5-trisphosphate (IP 3 )-sensitive calcium channel inhibitors. Calcium measurements inside and outside the acrosome showed that Rab3A promotes a calcium efflux from the granule. Interestingly, release of calcium through IP 3 -sensitive calcium channels was necessary even when exocytosis was initiated by increasing free calcium in the extraacrosomal compartment in both permeabilized and intact spermatozoa. Our results show that a calcium efflux from the acrosome through IP 3 -sensitive channels is necessary downstream Rab3A activation during the membrane fusion process leading to acrosomal exocytosis.The acrosome reaction is an exocytotic process induced physiologically by the activation of sperm receptors by ligands in the zona pellucida of the oocyte. This interaction initiates a complex transduction mechanism leading to multiple fusions between the outer acrosomal membrane and the overlying plasmalemma resulting in the release of the acrosomal content and exposure of the molecules present on the inner acrosomal membrane.As in other regulated secretory events, calcium plays a central role in acrosome reaction (1). Recent results from different laboratories suggest that a first transient cytosolic calcium increase (probably mediated by T-type calcium channels (2)) leads to a second sustained increase of cytosolic calcium that is necessary for the acrosome reaction (3-9). Although the connection between the two events is not completely clear, the current hypothesis is that the first calcium increase causes the activation of a phospholipase C (PLC).1 There are several isoforms of PLC in the spermatozoa (10, 11). PLC␦4, in particular, has been implicated in the early events of the acrosome reaction (12). Active PLC would produce inositol 1,4,5-trisphosphate (IP 3 ) that would open IP 3 -sensitive calcium channels in the membrane of intracellular stores. The emptying of these stores would trigger the opening of store-operated calcium (SOC) channels in the plasma membrane causing a second and sustained calcium increase that would trigger acrosomal exocytosis (1, 7). Although direct proof for the nature of the calcium stores involved in this mechanism is lacking, severa...
The acrosome reaction is a regulated exocytotic process leading to a massive fusion between the outer acrosomal membrane and the cell membrane. In spite of the great amount of information available related to the acrosome reaction in several species, there is a remarkable paucity about the role of monomeric guanosine triphosphatases (GTPases) of the Rab family-well-established participants in exocytosis in other cell types-in the acrosome reaction. Western blot and immunofluorescence analysis indicate that Rab3A is present in human spermatozoa and localizes to the acrosomal region in the sperm head. One difficulty in studying the role of proteins in intact cells is the fact that they are unable to cross the cell membrane. Therefore, we established a working model of streptolysin O-permeabilized human spermatozoa. Permeabilized spermatozoa were able to respond in a regulated way to different stimuli, such as G protein activators and calcium. An acrosomal reaction was also triggered by a Rab3A peptide corresponding to the effector region. More important, recombinant Rab3A protein in the GTP-bound form caused acrosome exocytosis. The same protein loaded with GDP or Rab11 in the GTP-bound form was inactive. Also, recombinant GDI (GDP dissociation inhibitor)-a protein that releases Rab proteins from membrane-inhibited a GTPgammaS-stimulated acrosome reaction. Our results indicate that 1) permeabilized spermatozoa can be used to study the role of macromolecules in the acrosome reaction, 2) Rab3A is present in human spermatozoa, and 3) Rab3A or another Rab3 isoform is involved in the exocytosis of the acrosomal granule in human spermatozoa.
Exocytosis of the acrosome (the acrosome reaction) is a terminal morphological alteration that sperm must undergo prior to penetration of the extracellular coat of the egg. Ca(2+) is an essential mediator of this regulated secretory event. Aided by a streptolysin-O permeabilization protocol developed in our laboratory, we have previously demonstrated requirements for Rab3A, NSF, and synaptotagmin VI in the human sperm acrosome reaction. Interestingly, Rab3A elicits an exocytotic response of comparable magnitude to that of Ca(2+). Here, we report a direct role for the SNARE complex in the acrosome reaction. First, the presence of SNARE proteins is demonstrated by Western blot. Second, the Ca(2+)-triggered acrosome reaction is inhibited by botulinum neurotoxins BoNT/A, -E, -C, and -F. Third, antibody inhibition studies show a requirement for SNAP-25, SNAP-23, syntaxins 1A, 1B, 4, and 6, and VAMP 2. Fourth, addition of bacterially expressed SNAP-25 and SNAP-23 abolishes exocytosis. Acrosome reaction elicited by Rab3-GTP is also inhibited by BoNT/A, -C, and -F. Taken together, these results demonstrate a requirement for members of all SNARE protein families in the Ca(2+)- and Rab3A-triggered acrosome reaction. Furthermore, they indicate that the onset of sperm exocytosis relies on the functional assembly of SNARE complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.