As a consequence of intense industrialization in the last few decades, the amount of agro-industrial wastes has increasing, where new forms of valorization are crucial. In this work, five residual biomasses from Maranhão (Brazil) were investigated as supports for immobilization of lipase from Thermomyces lanuginosus (TLL). The new biocatalysts BM-TLL (babaçu mesocarp) and RH-TLL (rice husk) showed immobilization efficiencies >98% and hydrolytic activities of 5.331 U g−1 and 4.608 U g−1, respectively, against 142 U g−1 by Lipozyme® TL IM. High esterification activities were also found, with 141.4 U g−1 and 396.4 U g−1 from BM-TLL and RH-TLL, respectively, against 113.5 U g−1 by TL IM. Results of porosimetry, SEM, and BET demonstrated BM and RH supports are mesoporous materials with large hydrophobic area, allowing a mixture of hydrophobic adsorption and confinement, resulting in hyperactivation of TLL. These biocatalysts were applied in the production of hexyl laurate, where RH-TLL was able to generate 94% conversion in 4 h. Desorption with Triton X-100 and NaCl confirmed that new biocatalysts were more efficient with 5 times less protein than commercial TL IM. All results demonstrated that residual biomass was able to produce robust and stable biocatalysts containing immobilized TLL with better results than commercial preparations.
As a consequence of intense industrialization in the last few decades, the amount of agro-industrial wastes has increasing, where new forms of valorization are crucial. In this work, 5 residual biomasses from Maranhão (Brazil) were investigted as supports for immobilization of lipase from Thermomyces lanuginosus (TLL). The new biocatalysts BM-TLL (babaçu mesocarp) and RH-TLL (rice husk) showed immobilization efficiencies >98% and hydrolytic activities of 5,331 U.g-1 and 4.608 U. g-1 respectively against 142 U. g-1 by Lipozyme® TL IM. High esterification activities were also found, with 141.4 U.g-1 and 396.4 U.g-1 from BM-TLL and RH-TLL against 113.5 U.g-1 by TL IM. Results of porosimetry, SEM and BET demonstrated BM and RH supports are mesoporous materials with large hydrophobic area, allowing a mixture of hydrophobic adsorption and confinement, resulting in hyperactivation of TLL. These biocatalysts were applied in the production of hexyl laurate, where RH-TLL was able to generate 94% conversion in 4 h. Desorption with Triton X-100 and NaCl confirmed that new biocatalysts were more efficient with 5 times less protein than commercial TL IM. All results demonstrated that residual biomass was able to produce robust and stable biocatalysts containing immobilized TLL with better results than commercial preparations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.