Changes in water temperature may affect the aggressive behavior of aquatic organisms, such as fish, either by changing some physiological mechanisms or by increasing the probability of encounters between individuals as a result of variation in their swimming activity. In our study, we evaluated the influence of increasing and decreasing temperature on the aggressive behavior of the Neotropical cichlid fish Cichlasoma paranaense. Firstly, we tested the critical thermal maximum (CTMax) tolerated by this species. Then, we tested the effect of decreasing or increasing the water temperature in 6o C (starting at 27° C) on the aggressive interactions of fish under isolation or housed in groups. We found a CTMax value of 39° C for C. paranaense. We also observe that a 6° C decrease in water temperature lowers swimming activity and aggressive interactions in both isolated and group-housed fish, as expected. On the other hand, the increase in temperature had no effect on the fish’s aggressive behavior, neither for isolated nor for grouped fish. We concluded that C. paranaense shows high tolerance to elevated temperatures and, in turn, it does not affect aggressive behavior. Nevertheless, we cannot dismiss possible effects of elevated temperatures on aggressive interactions over longer periods.
Fish social behavior can be affected by artificial environments, particularly by factors that act upon species that show aggressive behavior to set social rank hierarchy. Although aggressive interactions are part of the natural behavior in fish, if constant and intense, such interactions can cause severe body injuries, increase energy expenditure, and lead the animals to suffer from social stress. The immediate consequence of these factors is a reduced welfare in social fish species. In this paper, we consider the factors that impact on the social behavior and welfare of Nile tilapia, an African cichlid fish widely used both in fish farms and in research; this species is frequently used as a model for physiology and behavior research. This is a polygynous species whose males interact aggressively, establishing a territorial based hierarchy, where a dominant male and several subordinate males arise. When social stability is shrunk, the negative effects of prolonged fighting emerge. In this paper, we summarized how some of the common practices in aquaculture, such as classifying individuals by matching their sizes, water renewal, stock density, and environment lighting affect Nile tilapia social aggressive interactions and, in turn, impact on its welfare. We also discuss some ways to decrease the effects of aggressive interactions in Nile tilapia, such as environment color and body tactile stimulation.
Body tactile stimulation has a positive effect upon highly social animals, such as mammals and cleaner-client coral-reef fish, by relieving stress and improving health. Conversely, some tactile contacts are naturally detrimental, such as those resulted from aggressive interactions. To study whether positive responses from tactile stimulation are generalized among vertebrates, we tested its effect on stress response and aggressive behavior in a territorial fish species, Nile tilapia. We developed an apparatus made of a row of sticks bordered by silicone bristles that was positioned in the middle of the aquarium, and through which fish had to pass to access food, thus receiving tactile stimulation. Isolated fish experienced tactile stimulation for 7 days, and were assigned to 2 types of stressors: non-social (confinement) or social (aggressive interaction). Each of them had a corresponding control treatment without tactile stimulation. Although fish spontaneously crossed the apparatus, we did not observe a decrease in plasma cortisol levels immediately after stressor application as a response to the use of the apparatus, either for social or non-social treatment. However, tactile stimulation reduced aggressive interaction in the social treatment, showing a positive effect on a territorial fish species, and pointing to a way to improve welfare.
We tested whether territorial fish (Nile tilapia) perceive body tactile stimulation as a positive or negative resource. Individual male fish were placed for eight days in an aquarium containing a rectangular PVC frame, which was filled with vertical plastic sticks sided with silicone bristles in the middle of the tank. Fish passing this device received a tactile stimulus. The fish then underwent a preference test by choosing between areas half-with and half-without tactile bristles. Then, fish were submitted to a motivation test where they had to pass an aversive stimulus (bright light) to access the device. Fish were, then, paired to settle social rank, which occurs by way of fights (social stressor), and were assigned again to preference and motivation tests. A group without social stress was used as a control. Contrary to our expectations, fish preferred the area without tactile bristles, although subordinate fish reached tactile stimulation more than the dominant one. Social stress did not affect the preference and motivation, suggesting that fish do not perceive tactile stimulation as a stressor reliever. However, as fish did not avoid the stimulation, reached the device spontaneously, and faced an aversive stimulus to access it, we conclude that tactile stimulation is not a negative condition and, therefore, can be used in further studies regarding fish welfare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.