Converting aeroelastic vibrations into electricity for low power generation has received growing attention over the past few years. In addition to potential applications for aerospace structures, the goal is to develop alternative and scalable configurations for wind energy harvesting to use in wireless electronic systems. This paper presents modeling and experiments of aeroelastic energy harvesting using piezoelectric transduction with a focus on exploiting combined nonlinearities. An airfoil with plunge and pitch degrees of freedom (DOF) is investigated. Piezoelectric coupling is introduced to the plunge DOF while nonlinearities are introduced through the pitch DOF. A state-space model is presented and employed for the simulations of the piezoaeroelastic generator. A two-state approximation to Theodorsen aerodynamics is used in order to determine the unsteady aerodynamic loads. Three case studies are presented. First the interaction between piezoelectric power generation and linear aeroelastic behavior of a typical section is investigated for a set of resistive loads. Model predictions are compared to experimental data obtained from the wind tunnel tests at the flutter boundary. In the second case study, free play nonlinearity is added to the pitch DOF and it is shown that nonlinear limit-cycle oscillations can be obtained not only above but also below the linear flutter speed. The experimental results are successfully predicted by the model simulations. Finally, the combination of cubic hardening stiffness and free play nonlinearities is considered in the pitch DOF. The nonlinear piezoaeroelastic response is investigated for different values of the nonlinear-to-linear stiffness ratio. The free play nonlinearity reduces the cut-in speed while the hardening stiffness helps in obtaining persistent oscillations of acceptable amplitude over a wider range of airflow speeds. Such nonlinearities can be introduced to aeroelastic energy harvesters (exploiting piezoelectric or other transduction mechanisms) for performance enhancement.
The use of smart materials in vibration control problems has been investigated in several researches over the last years. Although di erent smart materials are available, the piezoelectric one has received great attention due to ease of use as sensors, actuators, or both. The main control techniques using piezoelectric materials are the active and passive ones. Passive piezoelectric networks are adjusted for speci c target frequencies and, therefore, the e ective bandwidth of such systems is small. Although active systems can achieve good vibration control performance, the amount of external power and added hardware are important issues. The synchronized switch damping (SSD) technique was developed in order to address the issues of passive damping methodologies as well as the issues of active control systems. The SSD can be classi ed as semi-passive technique or semi-active technique that introduce the nonlinear treatment of the piezoelectric element voltage output and induce an increase in mechanical to electrical energy conversion and, consequently, the shunt damping e ect. In this work, the semi-passive piezoelectric control of a rotating cantilever beam response is presented and compared with other controllers. The nonlinear electromechanical model of a rotating beam with embedded piezoceramics is derived based on the variational-asymptotic method (VAM). The coupled non-linear rotary system is solved in the time-domain by using a generalized-alpha integration method in order to guarantee numerical stability. The simulations are performed for a wide range of rotating speeds. First, a set of load resistances (ranging from short circuit condition to open circuit condition) is considered. The e ect of optimum load resistance (for maximum damping) on the elastic behavior of the beam is investigated for increasing rotating speed. Later, the synchronized switch damping on short (SSDS) technique is employed to damp the nonlinear oscillations of the rotating beam with increasing rotating speed. Results show that the SSDS technique can be a useful method of control for nonlinear rotating beams such as helicopter blades.
Transforming aeroelastic vibrations into electricity for low-power generation has received growing attention over the past couple of years. The goal is to convert wind energy into electricity for powering small electronic components employed in wireless applications such as structural health monitoring. The potential applications of interest for aeroelastic energy harvesting range from lifting components in aircraft structures to several other engineering problems involving wireless electronic components located in high wind areas. This paper investigates linear and nonlinear aeroelastic energy harvesting using electromagnetic induction. A two-dimensional airfoil with plunge and pitch degrees of freedom (DOF) is considered. The electromagnetic induction is introduced to the plunge DOF by means of a coil-magnet combination and the nonlinearities are introduced through the pitch DOF. The governing dimensionless aeroelastic equations are given with electromagnetic coupling and a resistive load in the electrical domain. The effects of several dimensionless system parameters (electromechanical coupling, load resistance, and coil inductance) on the dimensionless electrical power as well as the dimensionless linear flutter speed are investigated. After considering the linear problem, combined nonlinearities are investigated to improve the electrical output. A cubic stiffness of the hardening type is combined with the free play nonlinearity to make the resulting nonlinear oscillations bounded with acceptable amplitude over a wide range of airflow speeds. The results and the dimensionless simulations presented in this work can be employed for designing and optimizing scalable aeroelastic energy harvesters for wind energy harvesting using electromagnetic induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.