Anisotropic materials possess direction dependent properties as a result of symmetry within their structure. Bismuth sulfide (Bi2S3) is an important semiconductor exhibiting anisotropy due to its crystalline and stratified structure. In this manuscript we present a new and straightforward procedure to deposit Bi2S3 thin films on soda lime glass substrates by the chemical bath deposition (CBD) technique. We studied two fundamental parameters, the time to deposit a single layer and the total number of layers deposited. The single layer deposition time was varied between 70 and 100 min and samples were coated with a total of 1, 2, or 3 layers. It is important to note that a fresh aqueous solution was used for every layer. Visible and near infra-red spectroscopy, scanning electron microscopy, X-ray photoelectrons spectroscopy, and X-ray diffraction were the characterization techniques used to study the resulting films. The calculated band gap values were found to be between 1.56 and 2.1 eV. The resulting Bi2S3 deposited films with the new formulation showed uniform morphology and orthorhombic crystalline structure with an average crystallite size of 19 nm. The thickness of the films varied from 190 to 600 nm in direct correlation to the deposition time and in agreement with the number of layers. The XPS results showed the characteristic bismuth doublet centered around 164.11 and 158.8 eV corresponding with the presence of Bi2S3. The symmetry within the Bi2S3 structure makes it a strong anisotropic crystal with potential applications in optoelectronic and photovoltaic devices, catalysis, and photoconductors among others.
The development of optics that provide spatial control of birefringence could enable better control of laser beam polarization, but available solutions are limited. Here we demonstrate a method to locally modify the birefringence of wave plates fabricated by glancing-angle deposition. The method employs localized melting of the anisotropic microstructure in a vacuum environment to alter the local birefringence. We demonstrate that this process is only possible under high vacuum to avoid trapping air within the melt zone. The direct-write method presented here can be readily utilized for coatings exhibiting form birefringence of virtually any chemical composition, size, and format.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.