Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells. MM cells localize to the bone marrow, where cell adhesion-mediated autocrine or paracrine activation of various cytokines, such as interleukin 6, insulin-like growth factor 1, and interferon α, results in their accumulation mainly because of loss of critical apoptotic controls. Resistance to apoptosis, a genetically regulated cell death process, may play a critical role in both pathogenesis and resistance to treatment of MM. Abnormalities in regulation and execution of apoptosis can contribute to tumor initiation, progression, as well as to tumor resistance to various therapeutic agents. Apoptosis is executed via 2 main pathways that lead to activation of caspases: the death receptor (extrinsic) pathway and the mitochondrial (intrinsic) pathway. Ionizing radiation and chemotherapeutic agents act primarily through the intrinsic pathway, in which mitochondria play the central role. Various therapeutic modalities that are effective in MM modulate levels of the proapoptotic and antiapoptotic Bcl-2 family of proteins and of inhibitors of apoptosis, expression of which is primarily regulated by p53, nuclear factor κB, and STAT (signal transducers and activators of transcription) factors. This review focuses on the key concepts and some of the most recent studies of signaling pathways regulated in MM and summarizes what is known about the clinical role of these pathways.
A large number of methods devoted to the identification of apoptotic cells and the analysis of the morphological, biochemical, and molecular changes that take place during this universal biological process have been developed. Apoptotic cells are recognized on the basis of their reduced DNA content and morphological changes that include nuclear condensation and which can be detected by flow cytometry (sub-G1 DNA content), Trypan Blue, or Hoechst staining. Changes in plasma membrane composition and function are detected by the appearance of phosphatidylserine on the plasma membrane, which reacts with Annexin V-fluorochrome conjugates. Combined with propidium iodide (PI) staining, this method can distinguish between the early and late apoptotic events. The best-recognized biochemical hallmarks of apoptosis are the activation of cysteine proteases (caspases), condensation of chromatin, and fragmentation of genomic DNA into nucleosomal fragments. Recognized by a variety of assays, activated caspases cleave many cellular proteins and the resulting fragments may serve as apoptosis markers. Finally, the mitochondria and the Bcl-2 family proteins play an important role in this process that can be recognized by translocation of apoptogenic factors, such as Bax and cytochrome c, in and out of mitochondria.
Although radiation therapy has been an important modality for cancer treatment, the molecular mechanisms underlying the overall genomic response of mammalian cells to radiation are not well characterized. The success of radiation therapy using ionizing radiation relies upon the regulation of both the cell cycle and apoptosis, as conferred by the activation of DNA damage-responsive genes. To better understand the key players involved in this response, expression-profiling experiments were performed using custom-made cDNA microarrays. In MOLT-4 lymphoma tumor cells, the induction of target gene products following irradiation supports a major role for p53 as a transcriptional activator, but also invokes questions regarding conditional transcription regulation following irradiation. Using chromatin immunoprecipitation (ChIP), p53 binding to chromatin was examined following irradiation using primers that are specific for p53 binding sites in target genes. PCR analysis indicates dynamic target gene binding. Thus, at 8 hours following radiation treatment, the p21 and puma promoter sites were characterized by relative increases in chromatin precipitation, while the bax promoter site was not. Because the binding of p53 to these sites only changed modestly following radiation, other studies were conducted to characterize the presence of constitutive binding to putative p53 DNA binding sites in several other genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.