The Vanadis ® 8 is a tool steel used in the manufacture of dies, punches and tools. It has a high carbon content combined with chromium, molybdenum and vanadium, and presents good performance in its mechanical properties. Usually, its chips obtained by machining are sold to companies that use remelting. However, this technique is considered expensive and harmful to the environment. Therefore, this work aimed to analyze the efficiency of the addition of vanadium carbide (VC) and molybdenum carbide (Mo 2 C) in the high energy ball milling of the Vanadis ® 8 steel. Microstructural analysis were performed in the pure steel and with 3% of VC and Mo 2 C additions. The milling parameters used were: speed of 350 rpm, ball-to-powder weight ratio of 15:1 and times of 4, 8 and 12 hours. The results indicated that the Vanadis ® 8 steel milled with VC presented the best microstructural results in all of the conducted tests.
The purpose of circular economy is to maximize resources efficiency. With the increase in consumption of raw materials, energy and waste generation, recycling is necessary for environmental and industrial reasons. Thus, the powder metallurgy, together with mechanical milling, stands as a new method for scraps recycling. This study aimed to produce UNS S31803 duplex stainless steel powders, with vanadium carbide (VC) addition as reinforcement, through mechanical milling. Different uniaxial compaction pressures (700, 800 and 900 MPa) were used, as well as sintering temperatures (1200, 1240 and 1280 °C) and times (1, 1.5 and 2 hours), in order to determine the best conditions. Particle size analysis, scanning electron microscopy and x-ray diffraction were used to characterize the powders. It was observed that the use of VC increased the comminution during the milling process, being obtained an average particle size of 42 μm. The highest density obtained was of 82% and hardness of 72%, in comparison with the steel from the manufacturing process. According to the analysis, it was verified that this method is viable, becoming an alternative route to reuse UNS S31803 duplex stainless steel scraps.
In this paper, Fe-15at.%Nb alloys were produced from high purity Fe (min. 99.8%) and Nb (min. 99.8%) powders via a mechanical alloying process. The effects of different Process Control Agents (i.e., methanol, hexane, and stearic acid) were investigated with powder morphologies, particle size distribution, and phase formation, and were sampled after up to 80 milling hours at 350 rpm. The powder morphologies and particle sizes were evaluated using scanning electron microscopy and laser diffraction analysis, respectively, and phases were identified via X-ray powder diffractometry. The results demonstrate for all conditions that, in the early stages, there was significant particle agglomeration due to the ductile-ductile feature of Fe and Nb powders, and latter an amorphization trend up to 80 milling hours. Methanol was the most efficient Process Control Agent in terms of avoiding cold welding, reducing of agglomeration, particle size distribution, reducing contamination and crystallinity reduction rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.