Past phylogenetic studies of the monocot order Alismatales left several higher-order relationships unresolved. We addressed these uncertainties using a nearly complete genus-level sampling of whole plastid genomes (gene sets representing 83 proteincoding and ribosomal genes) from members of the core alismatid families, Tofieldiaceae and additional taxa (Araceae and other angiosperms). Parsimony and likelihood analyses inferred generally highly congruent phylogenetic relationships within the order, and several alternative likelihood partitioning schemes had little impact on patterns of clade support. All families with multiple genera were resolved as monophyletic, and we inferred strong bootstrap support for most inter-and intrafamilial relationships. The precise placement of Tofieldiaceae in the order was not well supported. Although most analyses inferred Tofieldiaceae to be the sister-group of the rest of the order, one likelihood analysis indicated a contrasting Araceae-sister arrangement. Acorus (Acorales) was not supported as a member of the order. We also investigated the molecular evolution of plastid NADH dehydrogenase, a large enzymatic complex that may play a role in photooxidative stress responses. Ancestralstate reconstructions support four convergent losses of a functional NADH dehydrogenase complex in Alismatales, including a single loss in Tofieldiaceae.
A phylogenetic analysis of the early branching lineages of the monocotyledons is performed using data from two plastid genes (rbcL and matK), five mitochondrial genes (atp1, ccmB, cob, mttB and nad5) and morphology. The complete matrix includes 93 terminals representing Acorus, the 14 families currently recognized within Alismatales, and numerous lineages of monocotyledons and other angiosperms. Total evidence analysis results in an almost completely resolved strict consensus tree, but all data partitions, genomic as well as morphological, are incongruent. The effects of RNA editing and potentially processed paralogous sequences are explored and discussed. Despite a decrease in incongruence length differences after exclusion of edited sites, the major data partitions remain significantly incongruent. The 14 families of Alismatales are all found to be monophyletic, but Acorus is found to be included in Alismatales rather than being the sister group to all other monocotyledons. The placement is strongly supported by the mitochondrial data, atp1 in particular, but it cannot be explained as an artifact caused by patterns of editing or by sampling of processed paralogues.
-This work aimed to describe the foliar anatomy of seven species of Eucalyptus, emphasizing the characterization of secretory structures and the chemical nature of the compounds secreted and /or present in the leaves. Anatomical characterization and histochemical evaluation to determine the nature and localization of the secondary compounds were carried out in fully expanded leaves, according to standard methodology. Anatomical differences were verified among the species studied, especially in E. pyrocarpa. Sub-epidermal cavities were the only secretory structures found in the seven species studied, with higher density in E. pellita and lower in E. pilularis. The following compounds were histochemically detected: lipophilic compounds, specifically lipids of the essential or resin-oil type and sesquiterpene lactones found in the lumen of the cavities of the seven species; and hydrophilic compounds, of the phenolic compound type found in the mesophyll of all the species studied and on the epidermis of some of them. The results confirmed the complexity of the product secreted by the cavities, stressing the homogeneous histochemistry nature of these compounds among the species. However, the phenolic compounds results may be an indication of important variations in adaptations and ecological relations, since they show differences among the species.Keywords: Anatomy, Eucalyptus ssp. and plant defense. ANATOMIA E HISTOQUÍMICA FOLIAR DE SETE ESPÉCIES DE Eucalyptus
Besides being vital tools in taxonomic evaluation, the anatomy of plant secretory structures and the chemical composition of their secretions may contribute to a more thorough understanding of the roles and functions of these secretory structures. Here we used standard techniques for plant anatomy and histochemistry to examine secretory structures on leaves at different stages of development of Prockia crucis, to evaluate the origin and development of the structures, and to identify the disaccharides and monosaccharides in the exudates. Fructose, glucose, and sucrose constituted up to 49.6% of the entire secretion. The glands were confirmed to be extrafloral nectaries (EFNs); this is the first report of their presence in the genus Prockia. These EFNs are globular, sessile glands, with a central concavity occurring on the basal and marginal regions of the leaf. The epidermis surrounding the concavity is secretory, forming a single-layered palisade that strongly reacts with periodic acid-Schiff's reagent (PAS) and xylidine Ponceau, indicators of total polysaccharides and total proteins, respectively, in the exudate. On the basis of the similarity of these glands to the salicoid teeth in Populus and Salix, we suggest that these three taxa are phylogenetically close.
RESUMO -Nectários são comuns dentre as Leguminosae, estando freqüentemente localizados nas folhas. Objetivou-se caracterizar anatomicamente o caule, a folha e o nectário extrafloral de Chamaecrista trichopoda, bem como investigar a natureza química do secretado do nectário dessa espécie. As amostras foram submetidas a testes histoquímicos e técnicas usuais em anatomia vegetal, sendo analisadas ao microscópio de luz e eletrônico de varredura. Os folíolos são anfiestomáticos e dorsiventrais, apresentando feixes vasculares colaterais com fibras associadas. Nas células da bainha do feixe é comum a ocorrência de monocristais. Tricomas tectores unisseriados e multicelulares ocorrem na lâmina foliar e no caule. O caule apresenta epiderme unisseriada, com três a quatro camadas de colênquima subepidérmico, seguido internamente por duas a três camadas de colênquima. Na camada mais interna do córtex destacam-se idioblastos cristalíferos contendo monocristais, o feixe vascular é delimitado por fibras e a medula é parenquimática. As características anatômicas foliares e caulinares corroboram os dados existentes para a subfamília Caesalpinioideae. O nectário situa-se na parte adaxial do pecíolo e apresenta coloração alaranjada, com o ápice formando uma concavidade, bordas levemente abauladas e pedúnculo com cerca de 1 mm de altura. É comum a ocorrência de pequenas aberturas na superfície do nectário e hifas fúngicas na fase pós-secretora. Anatomicamente, confirmou-se uma estrutura semelhante à de um nectário, o qual é vascularizado por floema e xilema; o parênquima nectarífero ocorre abaixo da epiderme que apresenta cutícula espessa. Caracteres anatômicos do nectário podem auxiliar na taxonomia do gênero. As análises histoquímicas evidenciaram o acúmulo de tanino nas células do parênquima nectarífero, que pode funcionar como uma proteção à herbivoria. Observou-se a presença de poros na superfície do nectário, que podem ser sítios preferenciais de eliminação do néctar. Entretanto, futuras análises ao microscópio eletrônico de transmissão serão fundamentais para elucidar o processo de eliminação do néctar.Palavras-chave: anatomia vegetal, Leguminosae, nectário extrafloral. ABSTRACT -Nectaries are common among the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.