The cartography of lineaments across a territory can be optimized using geophysical potential field data. In this study, land gravity and EMAG2 (Earth Magnetic Anomaly Grid) data were simultaneously used to identify and characterize the major lineaments that spread across Cameroon. The data were filtered using a multi-scale approach including horizontal and vertical gradient analyses. The Euler Deconvolution method was later applied to the filtered data to estimate the extension and depth of the identified lineaments. Results show that the main lineaments across Cameroon are laterally extended with a dominant N45°E orientation. Some of these lineaments correlated well with the geographical location of some known major tectonic structures found across the country. The depth of these lineaments varies between 1 and 35 km. Some of the identified faults are still active as their location correlated with the location of some recent earthquakes that occurred in Cameroon. This work, therefore, highlights some hidden tectonic features which knowledge generally precedes exploration for subsurface resources.
Graphical Abstract
This study investigates the dominant orientations of lineament features and the relationship between these trends and the spatial orientation of tectonic structures in the transition zone of the Congo craton and the Pan African belt in South Cameroon area. Landsat 8 OLI/TIRS and hill-shaded images, constructed from 30 m-resolution SRTM-DEM data, were used for automatically extracting and mapping geological lineaments. Lineament features were analyzed by means of azimuth frequency and length density distributions. Three major sets of lineaments trending W–E, ENE-WSW and WNW-ESE are identified in the South Cameroon area. These trends are probably related to repeated reactivation of pre-existing crustal structures during Eburnean and Pan-African tectonic episodes. The lineaments were formed under the compressional tectonic stress regimes generated during these tectonic events.
The aim of this study is to determine the depth of deep tectonic structures observed in the Adamawa-Yadé zone (central part of Cameroon) and propose a new structural map of this area. The horizontal gradient associated with upward continuation and the 3D Euler deconvolution methods have been applied to the Earth Magnetic Anomaly Grid 2 (EMAG2) data from the study area. The determination of the maximum magnitude of the horizontal gradient of the total magnetic intensity field reduced to the equator, in addition to the main contacts deducted by Euler solution, allowed the production of a structural map to show the fault systems for the survey area. This result reveals the existence of two structural domains which is thus confirmed by the contrast of magnetic susceptibility in the Central Cameroon Zone. The suggested depths are in the range of 3.34 km to 4.63 km. The structural map shows two types of faults (minors and majors) with W-E, N-S, NW-SE, NE-SW, ENE-WSW, WNW-ESE, NNE-SSW, and NNW-SSE trending. The major faults which are deepest (3.81 km to 4.63 km) with NE-SW, W-E, and N-S direction are very represented in the second domain which includes the Pangar-Djerem zone. This domain which recovers many localities (Ngaoundéré, Tibati, Ngaoundal, Yoko Bétaré-Oya, and Yaoundé) is associated with the Pan-African orogeny and the Cameroon Volcanic Line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.