The main pathological symptoms of Alzheimer's disease (AD) are β-amyloid (Aβ) lesions and intracellular neurofibrillary tangles of hyperphosphorylated tau protein. Unfortunately, existing symptomatic therapies targeting Aβ and tau remain ineffective. In addition to these pathogenic factors, oxidative DNA damage is one of the major threats to newborn neurons. It is necessary to consider in detail what causes neurons to be extremely susceptible to oxidative damage, especially in the early stages of development. Accordingly, the regulation of redox status is crucial for the functioning of neural stem cells (NSCs). The redox-dependent balance, of NSC proliferation and differentiation and thus the neurogenesis process, is controlled by a series of signalling pathways. One of the most important signalling pathways activated after oxidative stress is the DNA damage response (DDR). Unfortunately, our understanding of adult neurogenesis in AD is still limited due to the research material used (animal models or post-mortem tissue), providing inconsistent data. Now, thanks to the advances in cellular reprogramming providing patient NSCs, it is possible to fill this gap, which becomes urgent in the light of the potential of their therapeutic use. Therefore, a decent review of redox signalling in NSCs under physiological and pathological conditions is required. At this moment, we attempt to integrate knowledge on the influence of oxidative stress and DDR signalling in NSCs on adult neurogenesis in Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.