Chikungunya virus (CHIKV) is an Arbovirus that is transmitted to humans primarily by the mosquito species Aedes aegypti. Infection with this pathogen is often associated with fever, rash and arthralgia. Neither a vaccine nor an antiviral drug is available for the prevention or treatment of this disease. Albeit considered a tropical pathogen, adaptation of the virus to the mosquito species Aedes albopictus, which is also very common in temperate zones, has resulted in recent outbreaks in Europe and the US. In the present study, we report on the discovery of a novel series of compounds that inhibit CHIKV replication in the low μM range. In particular, we initially performed a virtual screening simulation of ∼5 million compounds on the CHIKV nsP2, the viral protease, after which we investigated and explored the Structure-Activity Relationships of the hit identified in silico. Overall, a series of 26 compounds, including the original hit, was evaluated in a virus-cell-based CPE reduction assay. The study of such selective inhibitors will contribute to a better understanding of the CHIKV replication cycle and may represents a first step towards the development of a clinical candidate drug for the treatment of this disease.
Two new series of inhibitors of tubulin polymerization based on the 2-(alkoxycarbonyl)-3-(3′,4′,5′-trimethoxyanilino)benzo[b]thiophene and thieno[2,3-b]pyridine molecular skeletons were synthesized and evaluated for antiproliferative activity on a panel of cancer cell lines, inhibition of tubulin polymerization, cell cycle effects, and in vivo potency. Antiproliferative activity was strongly dependent on the position of the methyl group on the benzene portion of the benzo[b]thiophene nucleus, with the greatest activity observed when the methyl was located at the C-6 position. Also, in the smaller thieno[2,3-b]pyridine series, the introduction of the methyl group at the C-6 position resulted in improvement of antiproliferative activity to the nanomolar level. The most active compounds (4i and 4n) did not induce cell death in normal human lymphocytes, suggesting that the compounds may be selective against cancer cells. Compound 4i significantly inhibited in vivo the growth of a syngeneic hepatocellular carcinoma in Balb/c mice.
Introduction of novel and diverse functional groups in drug discovery is always seen with hesitancy until good activity and low toxicity characteristics are proven. The introduction of fluorine in drug-like compounds is now a well-accepted strategy in medicinal chemistry. However, polyfluoroalkyl groups, with the exception of trifluoromethyl substituents, are not well explored yet. Our aim is to show to the readers how polyfluorinated groups can be beneficial to the properties of pharmaceutically active compounds by highlighting the structure-activity relationship (SAR) studies that led to the selection of polyfluorinated moieties as key structural features. Despite the fact that the use of higher polyfluoroalkyl/aryl moieties is still in its infancy, we believe that they will soon acquire the same importance of their lower parents.
Prostate cancer (PC) is one of the major causes of male death worldwide and the development of new and more potent anti-PC compounds is a constant requirement. Among the current treatments, (R)-bicalutamide and enzalutamide are non-steroidal androgen receptor antagonist drugs approved also in the case of castration-resistant forms. Both these drugs present a moderate antiproliferative activity and their use is limited due to the development of resistant mutants of their biological target. Insertion of fluorinated and perfluorinated groups in biologically active compounds is a current trend in medicinal chemistry, applied to improve their efficacy and stability profiles. As a means to obtain such effects, different modifications with perfluoro groups were rationally designed on the bicalutamide and enzalutamide structures, leading to the synthesis of a series of new antiproliferative compounds. Several new analogues displayed improved in vitro activity towards four different prostate cancer cell lines, while maintaining full AR antagonism and therefore representing promising leads for further development. Furthermore, a series of molecular modelling studies were performed on the AR antagonist conformation, providing useful insights on potential protein-ligand interactions.
Human norovirus causes approximately 219,000 deaths annually, yet there are currently no antivirals available. A virtual screening of commercially available drug-like compounds (~300,000) was performed on the suramin and PPNDS binding-sites of the norovirus RNA-dependent RNA polymerase (RdRp). Selected compounds (n = 62) were examined for inhibition of norovirus RdRp activity using an in vitro transcription assay. Eight candidates demonstrated RdRp inhibition (>25% inhibition at 10 µM), which was confirmed using a gel-shift RdRp assay for two of them. The two molecules were identified as initial hits and selected for structure-activity relationship studies, which resulted in the synthesis of novel compounds that were examined for inhibitory activity. Five compounds inhibited human norovirus RdRp activity (>50% at 10 µM), with the best candidate, 54, demonstrating an IC50 of 5.6 µM against the RdRp and a CC50 of 62.8 µM. Combinational treatment of 54 and the known RdRp site-B inhibitor PPNDS revealed antagonism, indicating that 54 binds in the same binding pocket. Two RdRps with mutations (Q414A and R419A) previously shown to be critical for the binding of site-B compounds had no effect on inhibition, suggesting 54 interacts with distinct site-B residues. This study revealed the novel scaffold 54 for further development as a norovirus antiviral.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.