In the fission yeast Schizosaccharomyces pombe, we have detected prominent DNA breaks that appeared shortly after premeiotic DNA replication. These breaks, like meiotic recombination, required the products of the six rec genes tested. Prominent breaks were detected at widely separated sites, about 100-300 kb apart, equivalent to about 50-150 sites per genome or approximately the number of meiotic recombination events. Certain features of these breaks are similar to those in the distantly related yeast Saccharomyces cerevisiae, the only other organism in which meiotic DNA breaks have been reported. Other features, however, appear to be different. These results suggest that, although DNA breaks may be a general feature of meiotic recombination, the breaks in S. pombe may play a role different from those in S. cerevisiae.
In Tetrahymena, a multi-sexed single-celled organism, the sex of the progeny is randomly determined by site-specific recombination events that assemble one complete gene pair and delete all others.
Tetrahymena thermophila is a ciliate -- a unicellular eukaryote. Remarkably, every cell maintains differentiated germline and somatic genomes: one silent, the other expressed. Moreover, the two genomes undergo diverse processes, some as extreme as life and death, simultaneously in the same cytoplasm. Conserved eukaryotic mechanisms have been modified in ciliates to selectively deal with the two genomes. We describe research in several areas of Tetrahymena biology, including meiosis, amitosis, genetic assortment, selective nuclear pore transport, somatic RNAi-guided heterochromatin formation, DNA excision and programmed nuclear death by autophagy, which has enriched and broadened knowledge of those mechanisms.
Ciliated protozoans present several features of chromosome segregation that are unique among eukaryotes, including their maintenance of two nuclei: a germline micronucleus, which undergoes conventional mitosis and meiosis, and a somatic macronucleus that divides by an amitotic process. To study ciliate chromosome segregation, we have identified the centromeric histone gene in the Tetrahymena thermophila genome (CNA1). CNA1p specifically localizes to peripheral centromeres in the micronucleus but is absent in the macronucleus during vegetative growth. During meiotic prophase of the micronucleus, when chromosomes are stretched to twice the length of the cell, CNA1p is found localized in punctate spots throughout the length of the chromosomes. As conjugation proceeds, CNA1p appears initially diffuse, but quickly reverts to discrete dots in those nuclei destined to become micronuclei, whereas it remains diffuse and is gradually lost in developing macronuclei. In progeny of germline CNA1 knockouts, we see no defects in macronuclear division or viability of the progeny cells immediately following the knockout. However, within a few divisions, progeny show abnormal mitotic segregation of their micronucleus, with most cells eventually losing their micronucleus entirely. This study reveals a strong dependence of the germline micronucleus on centromeric histones for proper chromosome segregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.