In general, thicker tapers with longer contact lengths were associated with greater fretting scores, whereas no relationship was found among the three designs for corrosion scores or volumetric wear. This finding suggests that trunnion diameter and engagement length are important factors to consider when improving taper-trunnion junction design.
Background Fretting and corrosion at head-neck junctions of total hip arthroplasties (THAs) have been associated with adverse local tissue reactions in patients with both metal-onpolyethylene (MoP) and metal-on-metal (MoM) prostheses. Femoral head size contributes to the severity of fretting and corrosion in large-diameter MoM THAs, but its impact on such damage in MoP THAs remains unknown. Questions/purposes (1) Is femoral head size associated with increased fretting or corrosion at the head-neck junction in MoP total hips? (2) Is duration of implantation associated with increased fretting or corrosion? Methods The severity of fretting/corrosion on surfaces of head tapers and stem trunnions was visually examined in 154 MoP THAs retrieved as part of 3282 revision surgeries performed at our institution between January 1, 2007, and December 31, 2013. Fretting and corrosion damage were subjectively graded by two independent observers on a 1 to 4 scale, and their relations to head size, alloy combinations, taper/trunnion design, length of implantation (LOI), and location were investigated. Differences in scores never exceeded one grade, and this occurred in only 17% of examined implants. With the available implants, the study provided 88% power to detect differences of 0.5 in fretting or corrosion scores in these analyses. Results Fretting and corrosion of the tapers and the trunnions were not affected by head size (p = 0.247, p = 0.471, p = 0.837, and p = 0.868, respectively), although taper/trunnion design affected taper fretting (p = 0.005) and corrosion (p = 0.0031) and trunnion fretting (p = 0.0028). Head taper fretting (observed in 73% of heads) increased with LOI, but head taper corrosion (noted in 93% of heads) was not affected. Trunnion fretting (observed in 86% of stems) was more severe in mixed-alloy combinations and with increased LOI and was more severe proximally. Trunnion corrosion (noted in 72% of stems) was also location-dependent with greater corrosion distally. Conclusions Fretting and corrosion are regular occurrences in MoP THAs, but neither damage type was related to femoral head size. Conversely, taper design, LOI, and alloy combination affected the severity of both fretting and corrosion.
Unexplained pain in patients with well-positioned MOM hips warrants further investigation with MRI to look for features predictive of ALVAL. Tissue destruction in these cases does not appear to be related to high bearing wear or the presence of a taper.
Our short-term retrieval data of 33 highly cross-linked polyethylene dual mobility components suggest that although motion occurs at both bearing articulations, the motion of the femoral head against the inner polyethylene bearing dominates. Although damage was not severe enough to lead to intraprosthetic dislocation, failure may occur long term and should be assessed in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.