Background. A wide range of treatments have been used to improve upper arm motor performances in children with congenital hemiplegia. Recent findings are suggesting that virtual reality based intervention could be a promising tool also in pediatric rehabilitation. Methods. Six patients with congenital hemiplegia (age: 4–16 years) were recruited among those treated in the Child Neuropsychiatry and Rehabilitation Unit of the IRCCS “Santa Maria Nascente” (Milan, Italy), for a preliminary investigation about using nonimmersive virtual reality for upper limb rehabilitation. Ten sessions using VRRS system (Khymeia, Padova, Italy) were weekly administered as a part of the rehabilitative treatment. Melbourne Assessment of Unilateral Limb Movement, Ashworth Scale, and Arm's PROM were selected as main outcome measures. At the end of treatment, participants filled in an ad hoc satisfaction questionnaire. Results. All subjects completed the proposed treatment, and they also gave a positive judgment regarding this rehabilitative method. Melbourne score increased in all patients. Conclusion. Our findings seem to support the evidence that VR treatment could be a promising and engaging tool for pediatric rehabilitation. However, the limited size of the population and the small number of sessions require further investigations and RCTs to confirm our positive results.
IntroductionAdolescents with cerebral palsy often do not need a specific rehabilitative treatment; however, when specific needs are expressed, clinicians should listen and try to answer them.Case presentationWe present the case of a 17-year-old Italian male patient with hemiplegia who had received standard physiotherapy and, ultimately, after a period of adapted physical activity performed in a group, was under consideration for discharge. However, due to unsatisfactory hand control, he asked for help to reach a personal goal, the ability to drive a motorbike, without surgery. Functional taping showed efficacy, but was neither cost-effective nor practical for the patient and his family; by contrast, a dynamic orthosis associated with training in a real-life environment was instead successful.ConclusionThe present case underlines the importance of considering solutions involving the motivation and compliance of the patient in order to improve his activity and participation.
The progressive miniaturization of electronic devices and their exponential increase in processing, storage and transmission capabilities, represent key factors of the current digital transformation, also sustaining the great development of Ambient Assisted Living (AAL) and the Internet of Things. Although most of the investigations in the recent years focused on remote monitoring and diagnostics, rehabilitation too could be positively affected by the widespread integrated use of these devices. Smart Objects in particular may be among the enablers to new quantitative approaches. In this paper, we present a proofof-concept and some preliminary results of an innovative pediatric rehabilitation protocol based on Smart Objects and biofeedback, which we administered to a sample of children with unilateral cerebral palsy. The novelty of the approach mainly consists in placing the sensing device into a common toy (a ball in our protocol) and using the information measured by the device to administer multimedia-enriched type of exercises, more engaging if compared to the usual rehabilitation activities used in clinical settings. We also introduce a couple of performance indexes, which could be helpful for a quantitative continuous evaluation of movements during the exercises. Even if the number of children involved and sessions performed are not suitable to assess any change in the subjects' abilities, nor to derive solid statistical inferences, the novel approach resulted very engaging and enjoyable by all the children participating in the study. Moreover, given the almost non-existent literature on the use of Smart Objects in pediatric rehabilitation, the few qualitative/quantitative results here reported may promote the scientific and clinical discussion regarding AAL solutions in a "Computer Assisted Rehabilitation" perspective, towards what can be defined "Pediatric Rehabilitation 2.0".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.