Silencing Akt in PTEN-mutated prostate cancer cells enhances the antitumor effects of taxol. No siRNA chemosensitization was obtained in prostate cells with wild type PTEN.
We have previously shown that PTHrP(38-94)-amide restrains growth and invasion "in vitro", causes striking toxicity and accelerates death of some breast cancer cell lines, the most responsive being MDA-MB231 whose tumorigenesis was also attenuated "in vivo". PTHrP(38-94)-amide contains the domain implicated in the nuclear import of PTHrP. Although the nucleus was identified as a destination for mid-region PTHrP, evidence for direct DNA-binding capability is lacking to date. Here, we examined the localization of PTHrP(38-94)-amide within MDA-MB231 cells and within metaphase spread preparations and characterized its DNA-binding properties, employing a combination of immunocytochemical, cytogenetic, "whole genome"/conventional PCR, EMSA and DNase footprinting techniques. The results obtained: (i) show that PTHrP(38-94)-amide gains access to the nuclear compartment of MDA-MB231 cell; (ii) demonstrate that PTHrP(38-94)-amide is a DNA-binding peptide; and, (iii) represent the first data to date on the potential molecular targets in both cellular chromatin and isolated oligonucleotides "in vitro".
When originally published, Amalia Azzariti's name appeared incorrectly in the byline. Her name appears correctly in the above.
The original article to which this erratum refers was published in The Prostate 2007;67(7):782–789.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.